RESUMO
Chagas disease (CD) caused by the protozoan Trypanosoma cruzi affects more than six million people worldwide. Treatment is restricted to benznidazole (Bz) and nifurtimox (Nf) that display low activity in the later chronic stage besides triggering toxic events that result in treatment abandonment. Therefore, new therapeutic options are necessary. In this scenario, natural products emerge as promising alternatives to treat CD. In the family Plumbaginaceae, Plumbago sp. exhibits a broad spectrum of biological and pharmacological activities. Thus, our main objective was to evaluate, in vitro and in silico, the biological effect of crude extracts of root and of aerial parts of P. auriculata, as well as its naphthoquinone Plumbagin (Pb) against T. cruzi. The phenotypic assays revealed potent activity of the root extract against different forms (trypomastigote and intracellular forms) and strains (Y and Tulahuen), with a compound concentration that reduced 50% of the number of the parasite (EC50) values ranging from 1.9 to 3.9 µg/mL. In silico analysis showed that Pb is predicted to have good oral absorption and permeability in Caco2 cells, besides excellent probability of absorption by human intestinal cells, without toxic or mutagenic potential effects, not being predicted as a substrate or inhibitor of P-glycoprotein. Pb was as potent as Bz against intracellular forms and displayed a superior trypanosomicidal effect (about 10-fold) in bloodstream forms (EC50 = 0.8 µM) as compared to the reference drug (8.5 µM). The cellular targets of Pb on T. cruzi were evaluated using electron microscopy assays and the findings on bloodstream trypomastigotes showed several cellular insults related to the autophagic process. Regarding toxicity in mammalian cells, the root extracts and the naphthoquinone present a moderate toxic profile on fibroblasts and cardiac cell lines. Then, aiming to reduce host toxicity, the root extract and Pb were tested in combination with Bz, and the data showed additive profiles with the sum of the fractional inhibitory concentration indexes (ΣFICIs) being 1.45 and 0.87, respectively. Thus, our work reveals the promising antiparasitic activity of Plumbago auriculata crude extracts and its purified naphthoquinone Plumbagin against different forms and strains of Trypanosoma cruzi in vitro.
RESUMO
Atorvastatin (AVA) is a third-generation statin with several pleiotropic effects, considered the last synthetic pharmaceutical blockbuster. Recently, our group described the effects of AVA on DNA damage prevention and against Trypanosoma cruzi infection. In this study, our aim was to evaluate the efficacy, safety, and in silico pharmacokinetic profile of four hybrids of aminoquinolines with AVA 4a-d against T. cruzi using in vitro and in silico models. These synthetic compounds were designed by hybridization of the pentapyrrolic moiety of AVA with the aminoquinolinic unit of chloroquine or primaquine. Pharmacokinetics (ADME) and toxicity parameters were predicted by SwissADME, admetSAR and LAZAR in silico algorithms. The trypanocidal activity of AVA-quinoline hybrids were evaluated in vitro against amastigotes and trypomastigotes of T. cruzi, from Y (Tc II) and Tulahuen (Tc VI) strains. In vitro cardiocytotoxicity was assessed using primary cultures of mouse embryonic cardiac cells and in vitro hepatocytotoxicity on bidimensional and 3D-cultured HepG2 cells. Genotoxicity was evaluated by Ames test and micronucleus assay. Despite the overall good in silico ADMET profile, all tested compounds were predicted to be hepatotoxic. All hybrid derivatives presented high trypanocidal activity, against both trypomastigote and intracellular forms of T. cruzi, presenting EC50's lower than 1 µM besides superior selectivity than the reference drug, without evidences of cardiotoxicity in vitro. The compounds 4a and 4b presented a time-dependent toxicity in monolayer culture of HepG2 but no detectable toxic effects in their spheroids, opposing to the in silico prediction. We can conclude that the AVA-aminoquinoline hybrids presented a hit profile as antiparasitic agents in synthetic pharmaceutical innovation platforms.
Assuntos
Antimaláricos , Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Animais , Camundongos , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico , Doença de Chagas/parasitologia , Aminoquinolinas/farmacologia , Antimaláricos/farmacologia , Dano ao DNA , Preparações Farmacêuticas , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêuticoRESUMO
Azoles such as posaconazole (Posa) are highly potent against Trypanosoma cruzi. However, when tested in chronic Chagas disease patients, a high rate of relapse after Posa treatment was observed. It appears that inhibition of T. cruzi cytochrome CYP51, the target of azoles, does not deliver sterile cure in monotherapy. Looking for suitable combination partners of azoles, we have selected a set of inhibitors of sterol and sphingolipid biosynthetic enzymes. A small-scale phenotypic screening was conducted in vitro against the proliferative forms of T. cruzi, extracellular epimastigotes and intracellular amastigotes. Against the intracellular, clinically relevant forms, four out of 15 tested compounds presented higher or equal activity as benznidazole (Bz), with EC50 values ≤2.2 µM. Ro48-8071, an inhibitor of lanosterol synthase (ERG7), and the steroidal alkaloid tomatidine (TH), an inhibitor of C-24 sterol methyltransferase (ERG6), exhibited the highest potency and selectivity indices (SI = 12 and 115, respectively). Both were directed to combinatory assays using fixed-ratio protocols with Posa, Bz, and fexinidazole. The combination of TH with Posa displayed a synergistic profile against amastigotes, with a mean ΣFICI value of 0.2. In vivo assays using an acute mouse model of T. cruzi infection demonstrated lack of antiparasitic activity of TH alone in doses ranging from 0.5 to 5 mg/kg. As observed in vitro, the best combo proportion in vivo was the ratio 3 TH:1 Posa. The combination of Posa at 1.25 mpk plus TH at 3.75 mpk displayed suppression of peak parasitemia of 80% and a survival rate of 60% in the acute infection model, as compared to 20% survival for Posa at 1.25 mpk alone and 40% for Posa at 10 mpk alone. These initial results indicate a potential for the combination of posaconazole with tomatidine against T. cruzi.
Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Doença de Chagas/tratamento farmacológico , Humanos , Camundongos , Tomatina/análogos & derivados , Triazóis/farmacologiaRESUMO
The phosphodiesterase inhibitor tetrahydrophthalazinone NPD-008 was explored by phenotypic in vitro screening, target validation, and ultrastructural approaches against Trypanosoma cruzi NPD-008 displayed activity against different forms and strains of T. cruzi (50% effective concentration [EC50], 6.6 to 39.5 µM). NPD-008 increased cAMP levels of T. cruzi and its combination with benznidazole gave synergistic interaction. It was also moderately active against intracellular amastigotes of Leishmania amazonensis and Leishmania infantum, confirming a potential activity profile as an antitrypanosomatid drug candidate.
Assuntos
Antiprotozoários , Doença de Chagas , Leishmania mexicana , Trypanosoma cruzi , Antiprotozoários/uso terapêutico , Doença de Chagas/tratamento farmacológico , Humanos , Diester Fosfórico HidrolasesRESUMO
In previous studies, we have identified several families of 5-nitroindazole derivatives as promising antichagasic prototypes. Among them, 1-(2-aminoethyl)-2-benzyl-5-nitro-1,2-dihydro-3H-indazol-3-one, (hydrochloride) and 1-(2-acetoxyethyl)-2-benzyl-5-nitro-1,2-dihydro-3H-indazol-3-one (compounds 16 and 24, respectively) have recently shown outstanding activity in vitro over the drug-sensitive Trypanosoma cruzi CL strain (DTU TcVI). Here, we explored the activity of these derivatives against the moderately drug-resistant Y strain (DTU TcII), in vitro and in vivo. The outcomes confirmed their activity over replicative forms, showing IC50 values of 0.49 (16) and 5.75 µm (24) towards epimastigotes, 0.41 (16) and 1.17 µm (24) against intracellular amastigotes. These results, supported by the lack of toxicity on cardiac cells, led to better selectivities than benznidazole (BZ). Otherwise, they were not as active as BZ in vitro against the non-replicative form of the parasite, i.e. bloodstream trypomastigotes. In vivo, acute toxicity assays revealed the absence of toxic events when administered to mice. Moreover, different therapeutic schemes pointed to their capability for decreasing the parasitaemia of T. cruzi Y acute infected mice, reaching up to 60% of reduction at the peak day as monotherapy (16), 79.24 and 91.11% when 16 and 24 were co-administered with BZ. These combined therapies had also a positive impact over the mortality, yielding survivals of 83.33 and 66.67%, respectively, while untreated animals reached a cumulative mortality of 100%. These findings confirm the 5-nitroindazole scaffold as a putative prototype for developing novel drugs potentially applicable to the treatment of Chagas disease and introduce their suitability to act in combination with the reference drug.
Assuntos
Indazóis , Trypanosoma cruzi/efeitos dos fármacos , Animais , Linhagem Celular , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Resistência a Medicamentos , Quimioterapia Combinada , Humanos , Indazóis/farmacologia , Indazóis/toxicidade , Camundongos , Nitroimidazóis/farmacologia , Parasitemia/tratamento farmacológico , Tripanossomicidas/farmacologia , Tripanossomicidas/toxicidadeRESUMO
BACKGROUND: Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi, needs urgent alternative therapeutic options as the treatments currently available display severe limitations, mainly related to efficacy and toxicity. OBJECTIVES: As phosphodiesterases (PDEs) have been claimed as novel targets against T. cruzi, our aim was to evaluate the biological aspects of 12 new phthalazinone PDE inhibitors against different T. cruzi strains and parasite forms relevant for human infection. METHODS: In vitro trypanocidal activity of the inhibitors was assessed alone and in combination with benznidazole. Their effects on parasite ultrastructural and cAMP levels were determined. PDE mRNA levels from the different T. cruzi forms were measured by quantitative reverse transcription PCR. RESULTS: Five TcrPDEs were found to be expressed in all parasite stages. Four compounds displayed strong effects against intracellular amastigotes. Against bloodstream trypomastigotes (BTs), three were at least as potent as benznidazole. In vitro combination therapy with one of the most active inhibitors on both parasite forms (NPD-040) plus benznidazole demonstrated a quite synergistic profile (xΣ FICI = 0.58) against intracellular amastigotes but no interaction (xΣ FICI = 1.27) when BTs were assayed. BTs treated with NPD-040 presented disrupted Golgi apparatus, a swollen flagellar pocket and signs of autophagy. cAMP measurements of untreated parasites showed that amastigotes have higher ability to efflux this second messenger than BTs. NPD-001 and NPD-040 increase the intracellular cAMP content in both BTs and amastigotes, which is also released into the extracellular milieu. CONCLUSIONS: The findings demonstrate the potential of PDE inhibitors as anti-T. cruzi drug candidates.
Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Doença de Chagas/tratamento farmacológico , Humanos , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêuticoRESUMO
Chagas disease has spread throughout the world mainly because of the migration of infected individuals. In Brazil, only benznidazole (Bnz) is used; however, it is toxic and not active in the chronic phase, and cases of resistance are described. This work aimed at the synthesis and the trypanocidal evaluation in vitro and in vivo of six new Bnz analogues (3-8). They were designed by exploring the bioisosteric substitution between the amide group contained in Bnz and the 1,2,3-triazole ring. All the compounds were synthesized in good yields. With the exception of compound 7, the in vitro biological evaluation shows that all Bnz analogues were active against the amastigote form, whereas only compounds 3, 4, 5, and 8 were active against trypomastigote. Compounds 4 and 5 showed the most promising activities in vitro against the form of trypomastigote, being more active than Bnz. In vivo evaluation of compounds, 3-8 showed lower potency and higher toxicity than Bnz. Although the 1,2,3-triazole ring has been described in the literature as an amide bioisostere, its substitution here has reduced the activity of the compounds and made them more toxic. Thus, further molecular optimization could provide novel therapeutic agents for Chagas' disease.
Assuntos
Doença de Chagas/tratamento farmacológico , Nitroimidazóis/química , Triazóis/química , Tripanossomicidas/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doença de Chagas/veterinária , Masculino , Camundongos , Nifurtimox/química , Nifurtimox/farmacologia , Nifurtimox/uso terapêutico , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacosRESUMO
Chagas disease is a neglected pathology responsible for about 12,000 deaths every year across Latin America. Although six million people are infected by the Trypanosoma cruzi, current therapeutic options are limited, highlighting the need for new drugs. Here we report the preliminary structure activity relationships of a small library of 17 novel pyridyl sulfonamide derivatives. Analogues 4 and 15 displayed significant potency against intracellular amastigotes with EC50 of 5.4⯵M and 8.6⯵M. In cytotoxicity assays using mice fibroblast L929 cell lines, both compounds indicated low toxicity with decent selectivity indices (SI) >36 andâ¯>23 respectively. Hence these compounds represent good starting points for further lead optimization.
Assuntos
Doença de Chagas/tratamento farmacológico , Piridinas/farmacologia , Sulfonamidas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Piridinas/química , Relação Estrutura-Atividade , Sulfonamidas/químicaRESUMO
American trypanosomiasis or Chagas disease (CD) is a vector borne pathology caused by the parasite Trypanosoma cruzi (T. cruzi), which remains a serious global health problem. The current available treatment for CD is limited to two nitroderivatives with limited efficacy and several side effects. The rational design of ergosterol synthetic route inhibitors (e.g. CYP51 inhibitors) represents a promising strategy for fungi and trypanosomatids, exhibiting excellent anti-T.cruzi activity in pre-clinical assays. In the present work, we evaluate through different approaches (molecular docking, structure activity relationships, CYP51 inhibitory assay, and phenotypic screenings in vitro and in vivo) the potency and selectivity of a novel CYP51 inhibitor (compound 1) and its analogues against T.cruzi infection. Regarding anti-parasitic effect, compound 1 was active in vitro with EC50 3.86 and 4.00⯵M upon intracellular (Tulahuen strain) and bloodstream forms (Y strain), respectively. In vivo assays showed that compound 1 reduced in 43% the parasitemia peak but, unfortunately failed to promote animal survival. In order to promote an enhancement at the potency and pharmacological properties, 17 new analogues were purchased and screened in vitro. Our findings demonstrated that five compounds were active against intracellular forms, highlighting compounds 1e and 1f, with EC50 2.20 and 2.70⯵M, respectively, and selectivity indices (SI)â¯=â¯50 and 36, respectively. Against bloodstream trypomastigotes, compound 1f reached an EC50 value of 20.62⯵M, in a similar range to Benznidazole, but with low SI (3). Although improved the solubility of compound 1, the analogue 1f did not enhance the potency in vitro neither promote better in vivo efficacy against mouse model of acute T.cruzi infection arguing for the synthesis of novel pyrazolo[3,4-e][1,4]thiazepin derivatives aiming to contribute for alternative therapies for CD.