Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Langmuir ; 37(49): 14500-14508, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34843246

RESUMO

Host-guest interactions represent a growing research area with recent work demonstrating the ability to chemically manipulate both host molecules as well as guest molecules to vary the type and strength of bonding. Much less is known about the interactions of the guest molecules and hybrid materials containing similar chemical features to typical macrocyclic hosts. This work uses in vitro and in vivo kinetic analyses to investigate the interaction of closo-dodecahydrododecaborate derivatives with ferumoxytol, an iron oxide nanoparticle with a carboxylated dextran coating. We find that several boron cluster derivatives can become encapsulated into ferumoxytol, and the lack of pH dependence in these interactions suggests that ion pairing, hydrophobic/hydrophilic interaction, and hydrogen bonding are not the driving force for encapsulation in this system. Biodistribution experiments in BALB/c mice show that this system is nontoxic at the reported dosage and demonstrate that encapsulation of dodecaborate-based clusters in ferumoxytol can alter the biodistribution of the guest molecules.


Assuntos
Óxido Ferroso-Férrico , Nanopartículas , Animais , Compostos de Boro/toxicidade , Camundongos , Distribuição Tecidual
2.
Mol Cancer Res ; 19(8): 1375-1388, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33863814

RESUMO

Asparagine synthetase (ASNS) is a gene on the long arm of chromosome 7 that is copy-number amplified in the majority of glioblastomas. ASNS copy-number amplification is associated with a significantly decreased survival. Using patient-derived glioma stem cells (GSC), we showed that significant metabolic alterations occur in gliomas when perturbing the expression of ASNS, which is not merely restricted to amino acid homeostasis. ASNS-high GSCs maintained a slower basal metabolic profile yet readily shifted to a greatly increased capacity for glycolysis and oxidative phosphorylation when needed. This led ASNS-high cells to a greater ability to proliferate and spread into brain tissue. Finally, we demonstrate that these changes confer resistance to cellular stress, notably oxidative stress, through adaptive redox homeostasis that led to radiotherapy resistance. Furthermore, ASNS overexpression led to modifications of the one-carbon metabolism to promote a more antioxidant tumor environment revealing a metabolic vulnerability that may be therapeutically exploited. IMPLICATIONS: This study reveals a new role for ASNS in metabolic control and redox homeostasis in glioma stem cells and proposes a new treatment strategy that attempts to exploit one vulnerable metabolic node within the larger multilayered tumor network.


Assuntos
Asparagina/biossíntese , Neoplasias do Tronco Encefálico/metabolismo , Encéfalo/metabolismo , Glioma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Estresse Oxidativo/fisiologia , Animais , Aspartato-Amônia Ligase/metabolismo , Células HEK293 , Humanos , Camundongos , Estudos Retrospectivos
3.
Nanotheranostics ; 5(1): 57-72, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391975

RESUMO

Successful visualization of prostate cancer (PCa) tumor margins during surgery remains a major challenge. The visualization of these tumors during surgery via near infrared fluorescence (NIRF) imaging would greatly enhance surgical resection, minimizing tumor recurrence and improving outcome. Furthermore, chemotherapy is typically administered to patients after surgery to treat any missed tumor tissue around the surgical area, minimizing metastasis and increasing patient survival. For these reasons, a theranostics fluorescent nanoparticle could be developed to assist in the visualization of PCa tumor margins, while also delivering chemotherapeutic drug after surgery. Methods: Ferumoxytol (FMX) conjugated to the fluorescent dye and PCa targeting agent, heptamethine carbocyanine (HMC), yielded the HMC-FMX nanoprobe that was tested in vitro with various PCa cell lines and in vivo with both subcutaneous and orthotopic PCa mouse models. Visualization of these tumors via NIRF imaging after administration of HMC-FMX was performed. In addition, delivery of chemotherapeutic drug and their effect on tumor growth was also assessed. Results: HMC-FMX internalized into PCa cells, labeling these cells and PCa tumors in mice with near infrared fluorescence, facilitating tumor margin visualization. HMC-FMX was also able to deliver drugs to these tumors, reducing cell migration and slowing down tumor growth. Conclusion: HMC-FMX specifically targeted PCa tumors in mice allowing for the visualization of tumor margins by NIRF imaging. Furthermore, delivery of anticancer drugs by HMC-FMX effectively reduced prostate tumor growth and reduced cell migration in vitro. Thus, HMC-FMX can potentially translate into the clinic as a nanotheranostics agent for the intraoperative visualization of PCa tumor margins, and post-operative treatment of tumors with HMC-FMX loaded with anticancer drugs.


Assuntos
Nanopartículas , Neoplasias da Próstata/patologia , Humanos , Cuidados Intraoperatórios , Masculino , Neoplasias da Próstata/cirurgia
4.
ACS Nano ; 14(7): 8392-8408, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32551496

RESUMO

Despite significant efforts to improve glioblastoma multiforme (GBM) treatment, GBM remains one of the most lethal cancers. Effective GBM treatments require sensitive intraoperative tumor visualization and effective postoperative chemotherapeutic delivery. Unfortunately, the diffusive and infiltrating nature of GBM limits the detection of GBM tumors, and current intraoperative visualization methods limit complete tumor resection. In addition, although chemotherapy is often used to eliminate any cancerous tissue remaining after surgery, most chemotherapeutic drugs do not effectively cross the brain-blood barrier (BBB) or enter GBM tumors. As a result, GBM has limited treatment options with high recurrence rates, and methods that improve its complete visualization during surgery and treatment are needed. Herein, we report a fluorescent nanoparticle platform for the near-infrared fluorescence (NIRF)-based tumor boundary visualization and image-guided drug delivery into GBM tumors. Our nanoplatform is based on ferumoxytol (FMX), an FDA-approved magnetic resonance imaging-sensitive superparamagnetic iron oxide nanoparticle, which is conjugated with hepthamethine cyanine (HMC), a NIRF ligand that specifically targets the organic anion transporter polypeptides that are overexpressed in GBM. We have shown that HMC-FMX nanoparticles cross the BBB and selectively accumulate in the tumor using orthotopic GBM mouse models, enabling NIRF-based visualization of infiltrating tumor tissue. In addition, HMC-FMX can encapsulate chemotherapeutic drugs, such as paclitaxel or cisplatin, and deliver these agents into GBM tumors, reducing tumor size and increasing survival. Taken together, these observations indicate that HMC-FMX is a promising nanoprobe for GBM surgical visualization and drug delivery.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Animais , Barreira Hematoencefálica , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/cirurgia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Glioblastoma/cirurgia , Camundongos , Paclitaxel/uso terapêutico
5.
Nanotheranostics ; 3(2): 196-211, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31183314

RESUMO

Purpose: A successful cancer surgery requires the complete removal of cancerous tissue, while also sparing as much healthy, non-cancerous tissue as possible. To achieve this, an accurate identification of tumor boundaries during surgery is critical, but intra-operative tumor visualization remains challenging. Fluorescence imaging is a promising method to improve tumor detection and delineate tumor boundaries during surgery, but the lack of stable, long-circulating, clinically-translatable fluorescent probes that can identify tumors with high signal-to-noise ratios and low background fluorescence signals have prevented its widespread application. Methods: We screened the optical properties of several fluorescent dyes before and after nanoprobe encapsulation, and then identified nanoprobes with quenched fluorescence that were re-activated upon dye release. The physical and biological properties of these nanoprobes leading to fluorescence activation were investigated in vitro. Further, the cancer imaging properties of both free dyes and nanoprobe-encapsulated dyes were compared in vivo. Results: A novel fluorescent nanoprobe was prepared by combining two FDA-approved agents commonly used in the clinic: Feraheme (FH) and indocyanine green (ICG). The resulting FH-entrapped ICG nanoprobe [FH(ICG)] displayed quenched fluorescence compared to other nanoprobes, and this quenched fluorescence was re-activated in acidic tumor microenvironment conditions (pH 6.8) and upon uptake into cancer cells. Finally, in vivo studies in a prostate cancer mouse model demonstrated that FH(ICG) treatments enhance long-term fluorescence signals in tumors compared to ICG treatments, allowing for fluorescence-guided tumor identification using clinically relevant fluorescence cameras. Conclusions: FH(ICG) nanoprobes were identified as fluorescent nanoprobes with beneficial fluorescence activation properties compared to other FH-entrapped dyes. The activatable nature of this nanoprobe allows for a low background fluorescence signal and high signal-to-noise ratio within a long-circulating nanoagent, which allows for long-term fluorescence signals from tumors that enabled their fluorescence-guided detection. This activatable nanoprobe offers tremendous potential as a clinically translatable image-guided cancer therapy modality that can be prepared in a clinical setting.


Assuntos
Corantes Fluorescentes , Nanoestruturas , Neoplasias Experimentais , Imagem Óptica , Neoplasias da Próstata , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Humanos , Masculino , Camundongos , Camundongos Nus , Camundongos SCID , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/metabolismo , Células PC-3 , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo
6.
Nat Commun ; 10(1): 1867, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31000704

RESUMO

This Article contains an error in Figure 6. In panel b, the left-hand image is mistakenly described as showing fluorescence before treatment, while it in fact shows the same white light image as the right-hand panel without fluorescent overlay to better visualize the tumour location. A correct version of Figure 6b is presented in the accompanying Author Correction. The error has not been corrected in the original version of the Article.

7.
Nanotheranostics ; 3(1): 66-88, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30662824

RESUMO

Biological interactions between tumor-associated macrophages (TAMs), cancer cells and other cells within the tumor microenvironment contribute to tumorigenesis, tumor growth, metastasis and therapeutic resistance. TAMs can remodel the tumor microenvironment to reduce growth barriers such as the dense extracellular matrix and shift tumors towards an immunosuppressive microenvironment that protects cancer cells from targeted immune responses. Nanoparticles can interrupt these biological interactions within tumors by altering TAM phenotypes through a process called polarization. Macrophage polarization within tumors can shift TAMs from a growth-promoting phenotype towards a cancer cell-killing phenotype that predicts treatment efficacy. Because many types of nanoparticles have been shown to preferentially accumulate within macrophages following systemic administration, there is considerable interest in identifying nanoparticle effects on TAM polarization, evaluating nanoparticle-induced TAM polarization effects on cancer treatment using drug-loaded nanoparticles and identifying beneficial types of nanoparticles for effective cancer treatment. In this review, the macrophage polarization effects of nanoparticles will be described based on their primary chemical composition. Because of their strong macrophage-polarizing and antitumor effects compared to other types of nanoparticles, the effects of iron oxide nanoparticles on macrophages will be discussed in detail. By comparing the macrophage polarization effects of various nanoparticle treatments reported in the literature, this review aims to both elucidate nanoparticle material effects on macrophage polarization and to provide insight into engineering nanoparticles with more beneficial immunological responses for cancer treatment.


Assuntos
Polaridade Celular , Macrófagos , Nanopartículas/uso terapêutico , Neoplasias , Evasão Tumoral/efeitos dos fármacos , Microambiente Tumoral , Animais , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/patologia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
8.
ACS Macro Lett ; 6(3): 235-240, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29104818

RESUMO

In this study, we have synthesized a new hyperbranched polyester polymer containing sulfur-pendants (HBPE-S) in the branching points. This HBPE-S polymer is composed of spherical shaped, aliphatic three-dimensional architecture with carboxylic acid groups on the surface. The presence of sulfur pendants in the polymeric cavities demonstrated important role in the effective encapsulation of Bi-DOTA complexes ([Bi] = 5.21 µM), when compared to the previously reported polymer without sulfur pendants (HBPE, [Bi] = 1.07 x 10-3 µM). Higher X-ray blocking capability and excellent X-ray contrast images were obtained from Bi-DOTA encapsulating HBPE-S polymeric nanoparticles when compared with that of HBPE nanoparticles. In addition, the HBPE-S polymer's spherical structure with amphiphilic cavities allow for the successful encapsulation of anti-tumor drugs and optical dyes, indicating suitable for delivery of wide-range of theranostic agents for cancer diagnosis and treatment. Therapeutic drug taxol encapsulating, folic acid decorated HBPE-S-Fol nanoparticles showed more than 80% of lung carcinoma cell death within 24 h of incubation. Cell viability and microscopic experiments also confirmed for the targeted delivery, thereby minimizing toxicity to healthy tissues. Taken together, new HBPE-S polymer and multimodal theranostic nanoplatforms were synthesized with enhanced X-ray blocking capability for the effective cancer targeting and treatment monitoring.

9.
Theranostics ; 7(9): 2477-2494, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28744329

RESUMO

Herein, we report the use of a theranostic nanocarrier (Folate-HBPE(CT20p)) to deliver a therapeutic peptide to prostate cancer tumors that express PSMA (folate hydrolase 1). The therapeutic peptide (CT20p) targets and inhibits the chaperonin-containing TCP-1 (CCT) protein-folding complex, is selectively cytotoxic to cancer cells, and is non-toxic to normal tissue. With the delivery of CT20p to prostate cancer cells via PSMA, a dual level of cancer specificity is achieved: (1) selective targeting to PSMA-expressing prostate tumors, and (2) specific cytotoxicity to cancer cells with minimal toxicity to normal cells. The PSMA-targeting theranostic nanocarrier can image PSMA-expressing cells and tumors when a near infrared dye is used as cargo. Meanwhile, it can be used to treat PSMA-expressing tumors when a therapeutic, such as the CT20p peptide, is encapsulated within the nanocarrier. Even when these PSMA-targeting nanocarriers are taken up by macrophages, minimal cell death is observed in these cells, in contrast with doxorubicin-based therapeutics that result in significant macrophage death. Incubation of PSMA-expressing prostate cancer cells with the Folate-HBPE(CT20p) nanocarriers induces considerable changes in cell morphology, reduction in the levels of integrin ß1, and lower cell adhesion, eventually resulting in cell death. These results are relevant as integrin ß1 plays a key role in prostate cancer invasion and metastatic potential. In addition, the use of the developed PSMA-targeting nanocarrier facilitates the selective in vivo delivery of CT20p to PSMA-positive tumor, inducing significant reduction in tumor size.


Assuntos
Antígenos de Superfície/metabolismo , Antineoplásicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Glutamato Carboxipeptidase II/metabolismo , Terapia de Alvo Molecular/métodos , Nanopartículas/administração & dosagem , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Xenoenxertos , Humanos , Masculino , Camundongos Nus , Transplante de Neoplasias , Peptídeos/administração & dosagem , Resultado do Tratamento , Células Tumorais Cultivadas/citologia , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/fisiologia
10.
Opt Express ; 24(22): 25785-25796, 2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-27828513

RESUMO

Simple optical techniques that can accurately and selectively identify organic and inorganic material in a reproducible manner are of paramount importance in biological sensing applications. In this work, we demonstrate that a nanoimprinted plasmonic pattern with locked-in dimensions supports sharp deterministic hybrid resonances when coupled with an optical cavity suitable for high sensitive surface detection. The surface sensing property of this hybrid system is quantified by precise atomic layer growth of aluminum oxide using the atomic layer deposition technique. The analyte specific sensing ability is demonstrated in the detection of two dissimilar analytes, inorganic amine-coated iron oxide nanoparticles and organic streptavidin protein. Femto to nanomolar detection limits were achieved with the proposed coupled plasmonic system based on the versatile and robust soft nanoimprinting technique, which promises practical low cost biosensors.


Assuntos
Técnicas Biossensoriais , Óptica e Fotônica , Estreptavidina/análise , Óxido de Alumínio , Limite de Detecção , Nanoestruturas , Propriedades de Superfície
11.
Langmuir ; 30(21): 6197-208, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24805794

RESUMO

We have designed a set of multifunctional and multicoordinating polymer ligands that are optimally suited for surface functionalizing iron oxide and potentially other magnetic nanoparticles (NPs) and promoting their integration into biological systems. The amphiphilic polymers are prepared by coupling (via nucleophilic addition) several amine-terminated dopamine anchoring groups, poly(ethylene glycol) moieties, and reactive groups onto a poly(isobutylene-alt-maleic anhydride) (PIMA) chain. This design greatly benefits from the highly efficient and reagent-free one-step reaction of maleic anhydride groups with amine-containing molecules. The availability of several dopamine groups in the same ligand greatly enhances the ligand affinity, via multiple coordination, to the magnetic NPs, while the hydrophilic and reactive groups promote colloidal stability in buffer media and allow subsequent conjugation with target biomolecules. Iron oxide nanoparticles ligand exchanged with these polymer ligands have a compact hydrodynamic size and exhibit enhanced long-term colloidal stability over the pH range of 4-12 and in the presence of excess electrolytes. Nanoparticles ligated with terminally reactive polymers have been easily coupled to target dyes and tested in live cell imaging with no measurable cytotoxicity. Finally, the resulting hydrophilic nanoparticles exhibit large and size-dependent r2 relaxivity values.


Assuntos
Coloides/química , Compostos Férricos/química , Magnetismo , Nanopartículas Metálicas/química , Polímeros/química , Amidas/química , Aminas/química , Sobrevivência Celular , Meios de Contraste/química , Eletrólitos , Células HeLa , Humanos , Hidrodinâmica , Concentração de Íons de Hidrogênio , Ligantes , Luz , Imageamento por Ressonância Magnética , Anidridos Maleicos/química , Microscopia de Fluorescência , Nanopartículas/química , Iodeto de Potássio/química , Espalhamento de Radiação
12.
Nat Commun ; 5: 3384, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24594970

RESUMO

The effective delivery of therapeutics to disease sites significantly contributes to drug efficacy, toxicity and clearance. Here we demonstrate that clinically approved iron oxide nanoparticles (Ferumoxytol) can be utilized to carry one or multiple drugs. These so called 'nanophores' retain their cargo within their polymeric coating through weak electrostatic interactions and release it in slightly acidic conditions (pH 6.8 and below). The loading of drugs increases the nanophores' transverse T2 and longitudinal T1 nuclear magnetic resonance (NMR) proton relaxation times, which is proportional to amount of carried cargo. Chemotherapy with translational nanophores is more effective than the free drug in vitro and in vivo, without subjecting the drugs or the carrier nanoparticle to any chemical modification. Evaluation of cargo incorporation and payload levels in vitro and in vivo can be assessed via benchtop magnetic relaxometers, common NMR instruments or magnetic resonance imaging scanners.


Assuntos
Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Óxido Ferroso-Férrico/química , Concentração de Íons de Hidrogênio
13.
Small ; 10(6): 1202-11, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24339142

RESUMO

A magnetic nanosensor-based method is described to screen a library of drugs for potential binding to toxins. Screening is performed by measuring changes in the magnetic relaxation signal of the nanosensors (bMR nanosensors) in aqueous suspension upon addition of the toxin. The Anthrax lethal factor (ALF) is selected as a model toxin to test the ability of our bMR nanosensor-based screening method to identify potential inhibitors of the toxin. Out of 30 molecules screened, sulindac, naproxen and fusaric acid are found to bind LF, with dissociation constants in the low micromolar range. Further biological analysis of the free molecules in solution indicate that sulindac and its metabolic products inhibited LF cytotoxicity to macrophages with IC50 values in the micromolar range. Meanwhile, fusaric acid is found to be less effective at inhibiting LF cytotoxicity, while naproxen does not inhibit LF toxicity. Most importantly, when the sulindac and fusaric acid-bMR nanosensors themselves are tested as LF inhibitors, as opposed to the corresponding free molecules, they are stronger inhibitors of LF with IC50 values in the nanomolar range. Taken together, these studies show that a bMR nanosensors-based assay can be used to screen known drugs and other small molecules for inhibitor of toxins. The method can be easily modified to screen for inhibitors of other molecular interactions and not only the selected free molecule can be study as potential inhibitors but also the bMR nanosensors themselves achieving greater inhibitory potential.


Assuntos
Toxinas Bacterianas/antagonistas & inibidores , Magnetismo/instrumentação , Magnetismo/métodos , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Animais , Antígenos de Bactérias , Ligação Competitiva/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Simulação por Computador , Corantes Fluorescentes/farmacologia , Ácido Fusárico/química , Ácido Fusárico/farmacologia , Camundongos , Inibidores de Proteases/análise , Inibidores de Proteases/farmacologia , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/farmacologia , Sulindaco/química , Sulindaco/farmacologia
14.
Int J Nanomedicine ; 8: 3395-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039421

RESUMO

Ceria (CeO2) nanoparticles have been widely studied for numerous applications, but only a few recent studies have investigated their potential applications in medicine. Moreover, there have been almost no studies focusing on their possible antibacterial properties, despite the fact that such nanoparticles may reduce reactive oxygen species. In this study, we coated CeO2 nanoparticles with dextran or polyacrylic acid (PAA) because of their enhanced biocompatibility properties, minimized toxicity, and reduced clearance by the immune system. For the first time, the coated CeO2 nanoparticles were tested in bacterial assays involving Pseudomonas aeruginosa, one of the most significant bacteria responsible for infecting numerous medical devices. The results showed that CeO2 nanoparticles with either coating significantly inhibited the growth of Pseudomonas aeruginosa, by up to 55.14%, after 24 hours compared with controls (no particles). The inhibition of bacterial growth was concentration dependent. In summary, this study revealed, for the first time, that the characterized dextran- and PAA-coated CeO2 nanoparticles could be potential novel materials for numerous antibacterial applications.


Assuntos
Resinas Acrílicas/química , Cério/química , Cério/farmacologia , Dextranos/química , Nanocápsulas/administração & dosagem , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Antibacterianos/administração & dosagem , Antibacterianos/síntese química , Proliferação de Células/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Relação Dose-Resposta a Droga , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Tamanho da Partícula
15.
J Mater Chem B ; 1(10): 1421-1431, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32260782

RESUMO

Cerium oxide nanoparticles (CONPs) have demonstrated protection properties against oxidation in various cells and tissues. The mechanism of this, however, is poorly understood. Monitoring the interaction of CONPs with biological compartments 'in situ' is crucial to understand their biochemical and physiological properties in vivo. In this paper, a multifunctional nanoparticle platform was obtained through an intrinsic radiolabeling strategy and extrinsic surface functionalization to combine dual imaging components (Single Photon Emission Computed Tomography/Optical Imaging, SPECT/OI) in one nanoparticle. The cell viability, cell uptake and overall in vivo biodistribution of CONPs were also manipulated through surface functionalization. The intrinsic radiolabeling strategy is demonstrated by incorporating radionuclides (141Ce, 111In or 65Zn) into CONPs and a radiolabeled CONP (rCONP) was coated with biocompatible polymers including Dextran T10 (DT10), poly(acrylic acid) (PAA), or functionalized DT10 (DT10-NH2, DT10-PEG and DT10-sulfobetaine). Fluorescent CONPs were obtained through conjugation of fluorescein isothiocyanate (FITC) with DT10-NH2 rCONP and used for cell imaging. The DT10 and DT10-NH2 rCONP did not show decreased viability up to 120 µg mL-1 whilst the PAA rCONP showed decreased viability beyond 40 µg mL-1. Variations in blood circulation and renal/hepatic clearance of rCONPs were demonstrated and were dependent on surface coating and the hydrodynamic size of nanoparticles. The ex vivo biodistribution results were reflected in SPECT imaging of 141Ce-rCONPs, showing accumulation in the liver and spleen of a living mouse over a one week period. The intrinsic radiolabeling and extrinsic surface modifications together determine the biophysical properties of CONPs and their potential applications for in vivo studies and biomedical imaging.

16.
Langmuir ; 28(36): 13066-71, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22920917

RESUMO

Poly(ortho-phenylenediamine) synthesis enabled by the catalytic oxidase-like activity of nanoceria was accomplished for applications in electronics, medicine, and biotechnology. The polymer shows unique morphology, conductivity, and photoluminescence based on pH of the solution during synthesis. The various poly(ortho-phenylenediamine) preparations were characterized by UV-visible spectroscopy, scanning electron microscopy, fluorescence spectroscopy, fluorescence microscopy, high-pressure liquid chromatography, and cyclic voltammetry. Poly(ortho-phenylenediamine) synthesized at pH 1.0 by nanoceria was selected to be extensively studied on the basis of the fast synthetic kinetics and the resulting conductive and photoluminescent properties for various applications.


Assuntos
Cério/química , Luminescência , Fenilenodiaminas/síntese química , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Fenilenodiaminas/química
17.
ACS Nano ; 6(8): 7281-94, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22809405

RESUMO

Herein we report a novel gadolinium-encapsulating iron oxide nanoparticle-based activatable NMR/MRI nanoprobe. In our design, Gd-DTPA is encapsulated within the poly(acrylic acid) (PAA) polymer coating of a superparamagnetic iron oxide nanoparticle (IO-PAA), yielding a composite magnetic nanoprobe (IO-PAA-Gd-DTPA) with quenched longitudinal spin-lattice magnetic relaxation (T(1)). Upon release of the Gd-DTPA complex from the nanoprobe's polymeric coating in acidic media, an increase in the T(1) relaxation rate (1/T(1)) of the composite magnetic nanoprobe was observed, indicating a dequenching of the nanoprobe with a corresponding increase in the T(1)-weighted MRI signal. When a folate-conjugated nanoprobe was incubated in HeLa cells, a cancer cell line overexpressing folate receptors, an increase in the 1/T(1) signal was observed. This result suggests that, upon receptor-mediated internalization, the composite magnetic nanoprobe degraded within the cell's lysosome acidic (pH 5.0) environment, resulting in an intracellular release of Gd-DTPA complex with subsequent T(1) activation. In addition, when an anticancer drug (Taxol) was coencapsulated with the Gd-DTPA within the folate receptor targeting composite magnetic nanoprobe, the T(1) activation of the probe coincided with the rate of drug release and corresponding cytotoxic effect in cell culture studies. Taken together, these results suggest that our activatable T(1) nanoagent could be of great importance for the detection of acidic tumors and assessment of drug targeting and release by MRI.


Assuntos
Gadolínio , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Nanopartículas de Magnetita , Miócitos Cardíacos/citologia , Nanocápsulas , Linhagem Celular , Meios de Contraste/síntese química , Gadolínio/química , Células HeLa , Humanos , Nanopartículas de Magnetita/química , Nanocápsulas/química
18.
Mol Pharm ; 9(7): 2080-93, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22591113

RESUMO

Defects in the apoptotic machinery can contribute to tumor formation and resistance to treatment, creating a need to identify new agents that kill cancer cells by alternative mechanisms. To this end, we examined the cytotoxic properties of a novel peptide, CT20p, derived from the C-terminal, alpha-9 helix of Bax, an amphipathic domain with putative membrane binding properties. Like many antimicrobial peptides, CT20p contains clusters of hydrophobic and cationic residues that could enable the peptide to associate with lipid membranes. CT20p caused the release of calcein from mitochondrial-like lipid vesicles without disrupting vesicle integrity and, when expressed as a fusion protein in cells, localized to mitochondria. The amphipathic nature of CT20p allowed it to be encapsulated in polymeric nanoparticles (NPs) that have the capacity to harbor targeting molecules, dyes or drugs. The resulting CT20p-NPs proved an effective killer, in vitro, of colon and breast cancer cells, and in vivo, using a murine breast cancer tumor model. By introducing CT20p to Bax deficient cells, we demonstrated that the peptide's lethal activity was independent of endogenous Bax. CT20p also caused an increase in the mitochondrial membrane potential that was followed by plasma membrane rupture and cell death, without the characteristic membrane asymmetry associated with apoptosis. We determined that cell death triggered by the CT20p-NPs was minimally dependent on effector caspases and resistant to Bcl-2 overexpression, suggesting that it acts independently of the intrinsic apoptotic death pathway. Furthermore, use of CT20p with the apoptosis-inducing drug, cisplatin, resulted in additive toxicity. These results reveal the novel features of CT20p that allow nanoparticle-mediated delivery to tumors and the potential application in combination therapies to activate multiple death pathways in cancer cells.


Assuntos
Morte Celular/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cisplatino/farmacologia , Células HCT116 , Células HEK293 , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nanopartículas/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
20.
PLoS One ; 7(4): e35326, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496916

RESUMO

Bacterial infections are still a major global healthcare problem. The quick and sensitive detection of pathogens responsible for these infections would facilitate correct diagnosis of the disease and expedite treatment. Of major importance are intracellular slow-growing pathogens that reside within peripheral leukocytes, evading recognition by the immune system and detection by traditional culture methods. Herein, we report the use of hybridizing magnetic nanosensors (hMRS) for the detection of an intracellular pathogen, Mycobacterium avium spp. paratuberculosis (MAP). The hMRS are designed to bind to a unique genomic sequence found in the MAP genome, causing significant changes in the sample's magnetic resonance signal. Clinically relevant samples, including tissue and blood, were screened with hMRS and results were compared with traditional PCR analysis. Within less than an hour, the hMRS identified MAP-positive samples in a library of laboratory cultures, clinical isolates, blood and homogenized tissues. Comparison of the hMRS with culture methods in terms of prediction of disease state revealed that the hMRS outperformed established culture methods, while being significantly faster (1 hour vs 12 weeks). Additionally, using a single instrument and one nanoparticle preparation we were able to detect the intracellular bacterial target in clinical samples at the genomic and epitope levels. Overall, since the nanoparticles are robust in diverse environmental settings and substantially more affordable than PCR enzymes, the potential clinical and field-based use of hMRS in the multiplexed identification of microbial pathogens and other disease-related biomarkers via a single, deployable instrument in clinical and complex environmental samples is foreseen.


Assuntos
Leucócitos/microbiologia , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Nanotecnologia/métodos , Hibridização de Ácido Nucleico/métodos , Adolescente , Adulto , Idoso , Animais , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/genética , Doenças dos Bovinos/microbiologia , Criança , Doença de Crohn/microbiologia , Feminino , Humanos , Fenômenos Magnéticos , Masculino , Pessoa de Meia-Idade , Mycobacterium avium subsp. paratuberculosis/genética , Paratuberculose/diagnóstico , Paratuberculose/genética , Paratuberculose/microbiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA