Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38786313

RESUMO

Breast cancer is a major health concern worldwide. Mammography, a cost-effective and accurate tool, is crucial in combating this issue. However, low contrast, noise, and artifacts can limit the diagnostic capabilities of radiologists. Computer-Aided Diagnosis (CAD) systems have been developed to overcome these challenges, with the accurate outlining of the breast being a critical step for further analysis. This study introduces the SAM-breast model, an adaptation of the Segment Anything Model (SAM) for segmenting the breast region in mammograms. This method enhances the delineation of the breast and the exclusion of the pectoral muscle in both medio lateral-oblique (MLO) and cranio-caudal (CC) views. We trained the models using a large, multi-center proprietary dataset of 2492 mammograms. The proposed SAM-breast model achieved the highest overall Dice Similarity Coefficient (DSC) of 99.22% ± 1.13 and Intersection over Union (IoU) 98.48% ± 2.10 over independent test images from five different datasets (two proprietary and three publicly available). The results are consistent across the different datasets, regardless of the vendor or image resolution. Compared with other baseline and deep learning-based methods, the proposed method exhibits enhanced performance. The SAM-breast model demonstrates the power of the SAM to adapt when it is tailored to specific tasks, in this case, the delineation of the breast in mammograms. Comprehensive evaluations across diverse datasets-both private and public-attest to the method's robustness, flexibility, and generalization capabilities.

2.
Diagnostics (Basel) ; 12(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36010173

RESUMO

Breast density assessed from digital mammograms is a known biomarker related to a higher risk of developing breast cancer. Supervised learning algorithms have been implemented to determine this. However, the performance of these algorithms depends on the quality of the ground-truth information, which expert readers usually provide. These expert labels are noisy approximations to the ground truth, as there is both intra- and inter-observer variability among them. Thus, it is crucial to provide a reliable method to measure breast density from mammograms. This paper presents a fully automated method based on deep learning to estimate breast density, including breast detection, pectoral muscle exclusion, and dense tissue segmentation. We propose a novel confusion matrix (CM)-YNet model for the segmentation step. This architecture includes networks to model each radiologist's noisy label and gives the estimated ground-truth segmentation as well as two parameters that allow interaction with a threshold-based labeling tool. A multi-center study involving 1785 women whose "for presentation" mammograms were obtained from 11 different medical facilities was performed. A total of 2496 mammograms were used as the training corpus, and 844 formed the testing corpus. Additionally, we included a totally independent dataset from a different center, composed of 381 women with one image per patient. Each mammogram was labeled independently by two expert radiologists using a threshold-based tool. The implemented CM-Ynet model achieved the highest DICE score averaged over both test datasets (0.82±0.14) when compared to the closest dense-tissue segmentation assessment from both radiologists. The level of concordance between the two radiologists showed a DICE score of 0.76±0.17. An automatic breast density estimator based on deep learning exhibited higher performance when compared with two experienced radiologists. This suggests that modeling each radiologist's label allows for better estimation of the unknown ground-truth segmentation. The advantage of the proposed model is that it also provides the threshold parameters that enable user interaction with a threshold-based tool.

3.
IEEE Access ; 9: 42370-42383, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34812384

RESUMO

Chest X-ray images are useful for early COVID-19 diagnosis with the advantage that X-ray devices are already available in health centers and images are obtained immediately. Some datasets containing X-ray images with cases (pneumonia or COVID-19) and controls have been made available to develop machine-learning-based methods to aid in diagnosing the disease. However, these datasets are mainly composed of different sources coming from pre-COVID-19 datasets and COVID-19 datasets. Particularly, we have detected a significant bias in some of the released datasets used to train and test diagnostic systems, which might imply that the results published are optimistic and may overestimate the actual predictive capacity of the techniques proposed. In this article, we analyze the existing bias in some commonly used datasets and propose a series of preliminary steps to carry out before the classic machine learning pipeline in order to detect possible biases, to avoid them if possible and to report results that are more representative of the actual predictive power of the methods under analysis.

4.
Comput Methods Programs Biomed ; 195: 105668, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32755754

RESUMO

BACKGROUND AND OBJECTIVE: Breast cancer is the most frequent cancer in women. The Spanish healthcare network established population-based screening programs in all Autonomous Communities, where mammograms of asymptomatic women are taken with early diagnosis purposes. Breast density assessed from digital mammograms is a biomarker known to be related to a higher risk to develop breast cancer.It is thus crucial to provide a reliable method to measure breast density from mammograms. Furthermore the complete automation of this segmentation process is becoming fundamental as the amount of mammograms increases every day. Important challenges are related with the differences in images from different devices and the lack of an objective gold standard.This paper presents a fully automated framework based on deep learning to estimate the breast density. The framework covers breast detection, pectoral muscle exclusion, and fibroglandular tissue segmentation. METHODS: A multi-center study, composed of 1785 women whose "for presentation" mammograms were segmented by two experienced radiologists. A total of 4992 of the 6680 mammograms were used as training corpus and the remaining (1688) formed the test corpus. This paper presents a histogram normalization step that smoothed the difference between acquisition, a regression architecture that learned segmentation parameters as intrinsic image features and a loss function based on the DICE score. RESULTS: The results obtained indicate that the level of concordance (DICE score) reached by the two radiologists (0.77) was also achieved by the automated framework when it was compared to the closest breast segmentation from the radiologists. For the acquired with the highest quality device, the DICE score per acquisition device reached 0.84, while the concordance between radiologists was 0.76. CONCLUSIONS: An automatic breast density estimator based on deep learning exhibits similar performance when compared with two experienced radiologists. It suggests that this system could be used to support radiologists to ease its work.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Mama/diagnóstico por imagem , Densidade da Mama , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Mamografia
5.
PLoS One ; 14(8): e0220369, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31390350

RESUMO

OBJECTIVE: To evaluate the effects of Process-Reengineering interventions on the Electronic Health Records (EHR) of a hospital over 7 years. MATERIALS AND METHODS: Temporal Variability Assessment (TVA) based on probabilistic data quality assessment was applied to the historic monthly-batched admission data of Hospital La Fe Valencia, Spain from 2010 to 2016. Routine healthcare data with a complete EHR was expanded by processed variables such as the Charlson Comorbidity Index. RESULTS: Four Process-Reengineering interventions were detected by quantifiable effects on the EHR: (1) the hospital relocation in 2011 involved progressive reduction of admissions during the next four months, (2) the hospital services re-configuration incremented the number of inter-services transfers, (3) the care-services re-distribution led to transfers between facilities (4) the assignment to the hospital of a new area with 80,000 patients in 2015 inspired the discharge to home for follow up and the update of the pre-surgery planned admissions protocol that produced a significant decrease of the patient length of stay. DISCUSSION: TVA provides an indicator of the effect of process re-engineering interventions on healthcare practice. Evaluating the effect of facilities' relocation and increment of citizens (findings 1, 3-4), the impact of strategies (findings 2-3), and gradual changes in protocols (finding 4) may help on the hospital management by optimizing interventions based on their effect on EHRs or on data reuse. CONCLUSIONS: The effects on hospitals EHR due to process re-engineering interventions can be evaluated using the TVA methodology. Being aware of conditioned variations in EHR is of the utmost importance for the reliable reuse of routine hospitalization data.


Assuntos
Viés , Registros Eletrônicos de Saúde/tendências , Hospitais , Humanos , Alta do Paciente , Transferência de Pacientes , Qualidade da Assistência à Saúde , Espanha
6.
Comput Methods Programs Biomed ; 177: 123-132, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31319940

RESUMO

BACKGROUND: The breast dense tissue percentage on digital mammograms is one of the most commonly used markers for breast cancer risk estimation. Geometric features of dense tissue over the breast and the presence of texture structures contained in sliding windows that scan the mammograms may improve the predictive ability when combined with the breast dense tissue percentage. METHODS: A case/control study nested within a screening program covering 1563 women with craniocaudal and mediolateral-oblique mammograms (755 controls and the contralateral breast mammograms at the closest screening visit before cancer diagnostic for 808 cases) aging 45 to 70 from Comunitat Valenciana (Spain) was used to extract geometric and texture features. The dense tissue segmentation was performed using DMScan and validated by two experienced radiologists. A model based on Random Forests was trained several times varying the set of variables. A training dataset of 1172 patients was evaluated with a 10-stratified-fold cross-validation scheme. The area under the Receiver Operating Characteristic curve (AUC) was the metric for the predictive ability. The results were assessed by only considering the output after applying the model to the test set, which was composed of the remaining 391 patients. RESULTS: The AUC score obtained by the dense tissue percentage (0.55) was compared to a machine learning-based classifier results. The classifier, apart from the percentage of dense tissue of both views, firstly included global geometric features such as the distance of dense tissue to the pectoral muscle, dense tissue eccentricity or the dense tissue perimeter, obtaining an accuracy of 0.56. By the inclusion of a global feature based on local histograms of oriented gradients, the accuracy of the classifier was significantly improved (0.61). The number of well-classified patients was improved up to 236 when it was 208. CONCLUSION: Relative geometric features of dense tissue over the breast and histograms of standardized local texture features based on sliding windows scanning the whole breast improve risk prediction beyond the dense tissue percentage adjusted by geometrical variables. Other classifiers could improve the results obtained by the conventional Random Forests used in this study.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Mamografia , Medição de Risco/métodos , Idoso , Algoritmos , Área Sob a Curva , Densidade da Mama , Estudos de Casos e Controles , Reações Falso-Positivas , Feminino , Humanos , Aprendizado de Máquina , Pessoa de Meia-Idade , Tecido Parenquimatoso/diagnóstico por imagem , Curva ROC , Risco , Espanha
7.
Comput Methods Programs Biomed ; 168: 59-68, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29183649

RESUMO

BACKGROUND AND OBJECTIVE: Happiness is a universal fundamental human goal. Since the emergence of Positive Psychology, a major focus in psychological research has been to study the role of certain factors in the prediction of happiness. The conventional methodologies are based on linear relationships, such as the commonly used Multivariate Linear Regression (MLR), which may suffer from the lack of representative capacity to the varied psychological features. Using Deep Neural Networks (DNN), we define a Happiness Degree Predictor (H-DP) based on the answers to five psychometric standardized questionnaires. METHODS: A Data-Structure driven architecture for DNNs (D-SDNN) is proposed for defining a HDP in which the network architecture enables the conceptual interpretation of psychological factors associated to happiness. Four different neural network configurations have been tested, varying the number of neurons and the presence or absence of bias in the hidden layers. Two metrics for evaluating the influence of conceptual dimensions have been defined and computed: one quantifies the influence weight of the conceptual dimension in absolute terms and the other one pinpoints the direction (positive or negative) of the influence. MATERIALS: A cross-sectional survey targeting non-institutionalized adult population residing in Spain was completed by 823 cases. The total of 111 elements of the survey are grouped by socio-demographic data and by five psychometric scales (Brief COPE Inventory, EPQR-A, GHQ-28, MOS-SSS and SDHS) measuring several psychological factors acting one as the outcome (SDHS) and the four others as predictors. RESULTS: Our D-SDNN approach provided a better outcome (MSE: 1.46·10-2) than MLR (MSE: 2.30·10-2), hence improving by 37% the predictive accuracy, and allowing to simulate the conceptual structure. CONCLUSIONS: We observe a better performance of Deep Neural Networks (DNN) with respect to traditional methodologies. This demonstrates its capability to capture the conceptual structure for predicting happiness degree through psychological variables assessed by standardized questionnaires. It also permits to estimate the influence of each factor on the outcome without assuming a linear relationship.


Assuntos
Aprendizado Profundo , Felicidade , Adaptação Psicológica , Algoritmos , Estudos Transversais , Emoções , Feminino , Humanos , Masculino , Informática Médica , Modelos Psicológicos , Análise Multivariada , Valor Preditivo dos Testes , Psicometria , Apoio Social , Software , Estresse Psicológico , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA