Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 20(10): e2305769, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875738

RESUMO

Hybrid solid electrolytes (HSEs), namely mixtures of polymer and inorganic electrolytes, have supposedly improved properties with respect to inorganic and polymer electrolytes. In practice, HSEs often show ionic conductivity below expectations, as the high interface resistance limits the contribution of inorganic electrolyte particles to the charge transport process. In this study, the transport properties of a series of HSEs containing Li(1+ x ) Alx Ti(2- x ) (PO4 )3 (LATP) as Li+ -conducting filler are analyzed. The occurrence of Li+ exchange across the two phases is proved by isotope exchange experiment, coupled with 6 Li/7 Li nuclear magnetic resonance (NMR), and by 2D 6 Li exchange spectroscopy (EXSY), which gives a time constant for Li+ exchange of about 50 ms at 60 °C. Electrochemical impedance spectroscopy (EIS) distinguishes a short-range and a long-range conductivity, the latter decreasing with LATP concentration. LATP particles contribute to the overall conductivity only at high temperatures and at high LATP concentrations. Pulsed field gradient (PFG)-NMR suggests a selective decrease of the anions' diffusivity at high temperatures, translating into a marginal increase of the Li+ transference number. Although the transport properties are only marginally affected, addition of moderate amounts of LATP to polymer electrolytes enhances their mechanical properties, thus improving the plating/stripping performance and processability.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37883146

RESUMO

Li metal secondary batteries known for their high energy and power density are the much-awaited energy storage systems owing to the high specific capacity of Li metal. However, due to the instability of Li metal with common Li-ion battery electrolytes, a combination with a polymer electrolyte seems to be an effective strategy to alleviate the safety issues of employing Li metal and provide design conformity to the system. Current trends show improvements in different aspects, such as improving ionic conductivity, single-ion conductivity, mechanical stability, and electrochemical stability. A combination of all these properties has been a bottleneck for the development of polymer electrolytes for safe and efficient operation of all solid-state batteries. Herein, a multifunctional polysalt has been synthesized from green and sustainable materials, namely, ethyl cellulose, plasticized with adiponitrile, that contributes to meeting the critical properties enabling high compatibility with Li metal and a quasi-single-ion-conducting property while simultaneously acting as a matrix/filler for efficient operation of the cells. This multifunctional polymer matrix inhibits further decomposition of nitrile-based plasticizers on Li metal anodes with the formation of a favorable Li metal anode interface, thus enabling the utilization of high-voltage stable nitrile-based plasticizers (4.2 V) to be implemented as an electrolyte component for realization of high-voltage Li metal anode polymer batteries.

3.
Molecules ; 23(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545145

RESUMO

A primary amine-salicylamide derived from chiral trans-cyclohexane-1,2-diamine was used as an organocatalyst for the enantioselective conjugate addition of aldehydes, mainly α,α-disubstituted to N-substituted maleimides. The reaction was performed in toluene as a solvent at room temperature. The corresponding enantioenriched adducts were obtained with high yields and enantioselectivities up to 94%. Theoretical calculations were used to justify the stereoinduction.


Assuntos
Aldeídos/química , Maleimidas/química , Salicilamidas/química , Técnicas de Química Sintética , Cicloexilaminas/química , Diaminas , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA