Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523850

RESUMO

In Arabidopsis, the root clock regulates the spacing of lateral organs along the primary root through oscillating gene expression. The core molecular mechanism that drives the root clock periodicity and how it is modified by exogenous cues such as auxin and gravity remain unknown. We identified the key elements of the oscillator (AUXIN RESPONSE FACTOR 7, its auxin-sensitive inhibitor IAA18/POTENT, and auxin) that form a negative regulatory loop circuit in the oscillation zone. Through multilevel computer modeling fitted to experimental data, we explain how gene expression oscillations coordinate with cell division and growth to create the periodic pattern of organ spacing. Furthermore, gravistimulation experiments based on the model predictions show that external auxin stimuli can lead to entrainment of the root clock. Our work demonstrates the mechanism underlying a robust biological clock and how it can respond to external stimuli.

2.
Plant Physiol ; 176(2): 1709-1727, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29233938

RESUMO

Body regeneration through formation of new organs is a major question in developmental biology. We investigated de novo root formation using whole leaves of Arabidopsis (Arabidopsis thaliana). Our results show that local cytokinin biosynthesis and auxin biosynthesis in the leaf blade followed by auxin long-distance transport to the petiole leads to proliferation of J0121-marked xylem-associated tissues and others through signaling of INDOLE-3-ACETIC ACID INDUCIBLE28 (IAA28), CRANE (IAA18), WOODEN LEG, and ARABIDOPSIS RESPONSE REGULATORS1 (ARR1), ARR10, and ARR12. Vasculature proliferation also involves the cell cycle regulator KIP-RELATED PROTEIN2 and ABERRANT LATERAL ROOT FORMATION4, resulting in a mass of cells with rooting competence that resembles callus formation. Endogenous callus formation precedes specification of postembryonic root founder cells, from which roots are initiated through the activity of SHORT-ROOT, PLETHORA1 (PLT1), and PLT2. Primordia initiation is blocked in shr plt1 plt2 mutant. Stem cell regulators SCHIZORIZA, JACKDAW, BLUEJAY, and SCARECROW also participate in root initiation and are required to pattern the new organ, as mutants show disorganized and reduced number of layers and tissue initials resulting in reduced rooting. Our work provides an organ regeneration model through de novo root formation, stating key stages and the primary pathways involved.


Assuntos
Arabidopsis/genética , Reprogramação Celular , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Regeneração
3.
New Phytol ; 213(4): 1787-1801, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27859363

RESUMO

Plant growth and development require a continuous balance between cell division and differentiation. In root meristems, differentiated cells acquire specialized functions, losing their mitotic potential. Some plant cells, such as pericycle cells, have a remarkable plasticity to regenerate new organs. The molecular mechanisms underlying cell reprogramming are not completely known. In this work, a functional screening of transcription factors identified Arabidopsis OBP4 (OBF Binding Protein 4) as a novel regulator of root growth and cell elongation and differentiation. Overexpression of OBP4 regulates the levels of a large number of transcripts in roots, many involved in hormonal signaling and callus formation. OBP4 controls cell elongation and differentiation in root cells. OBP4 does not induce cell division in the root meristem, but promotes pericycle cell proliferation, forming callus-like structures at the root tip, as shown by the expression of stem cell markers. Callus formation is enhanced by ectopic expression of OBP4 in the wild-type or alf4-1, but is significantly reduced in roots that have lower levels of OBP4. Our data provide molecular insights into how differentiated root cells acquire the potential to generate callus, a pluripotent mass of cells that can regenerate fully functional plant organs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Divisão Celular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Meristema/citologia , Meristema/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
4.
Front Plant Sci ; 5: 219, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904615

RESUMO

Plants have extraordinary developmental plasticity as they continuously form organs during post-embryonic development. In addition they may regenerate organs upon in vitro hormonal induction. Advances in the field of plant regeneration show that the first steps of de novo organogenesis through in vitro culture in hormone containing media (via formation of a proliferating mass of cells or callus) require root post-embryonic developmental programs as well as regulators of auxin and cytokinin signaling pathways. We review how hormonal regulation is delivered during lateral root initiation and callus formation. Implications in reprograming, cell fate and pluripotency acquisition are discussed. Finally, we analyze the function of cell cycle regulators and connections with epigenetic regulation. Future work dissecting plant organogenesis driven by both endogenous and exogenous cues (upon hormonal induction) may reveal new paradigms of common regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA