Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(11): 5561-5573, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38258585

RESUMO

The prevalence of 3D-printed portable biomedical sensing devices, which are fashioned mainly from plastic and polymer materials, introduces a pressing concern due to their limited reusability and consequential generation of substantial disposable waste. Considering this, herein, we pioneered a ground-breaking advancement, i.e., a 3D-printed metal substrate-based enzyme. Our inventive methodology involved the synthesis of a thermally degraded Fe-based metal-organic framework, DEG 500, followed by its deposition on a 3D-printed metal substrate composed of Ti-Al-V alloy. This novel composite exhibited remarkable peroxidase-like activity in a range of different temperatures and pH, coupled with the ability to detect glucose in real-world samples such as blood and fruit juices. The exceptional enzymatic behaviour was attributed to the diverse iron (Fe) oxidation states and the presence of oxygen vacancies, as evidenced through advanced characterization techniques. Fundamentally, we rigorously explored the mechanistic pathway through controlled studies and theoretical calculations, culminating in a transformative stride toward more sustainable and effective biomedical sensing practices.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Glucose/química , Oxirredução , Peróxido de Hidrogênio/química , Peroxidases/metabolismo , Impressão Tridimensional , Peroxidase/química
2.
Molecules ; 28(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37375429

RESUMO

Metal-organic frameworks (MOFs) are currently under progressive development as a tool for non-viral biomolecule delivery. Biomolecules such as proteins, lipids, carbohydrates, and nucleic acids can be encapsulated in MOFs for therapeutic purposes. The favorable physicochemical properties of MOFs make them an attractive choice for delivering a wide range of biomolecules including nucleic acids. Herein, a green fluorescence protein (GFP)-expressing plasmid DNA (pDNA) is used as a representative of a biomolecule to encapsulate within a Zn-based metal-organic framework (MOF) called a zeolitic imidazolate framework (ZIF). The synthesized biocomposites are coated with positively charged amino acids (AA) to understand the effect of surface functionalization on the delivery of pDNA to prostate cancer (PC-3) cells. FTIR and zeta potential confirm the successful preparation of positively charged amino acid-functionalized derivatives of pDNA@ZIF (i.e., pDNA@ZIFAA). Moreover, XRD and SEM data show that the functionalized derivates retain the pristine crystallinity and morphology of pDNA@ZIF. The coated biocomposites provide enhanced uptake of genetic material by PC-3 human prostate cancer cells. The AA-modulated fine-tuning of the surface charge of biocomposites results in better interaction with the cell membrane and enhances cellular uptake. These results suggest that pDNA@ZIFAA can be a promising alternative tool for non-viral gene delivery.


Assuntos
Estruturas Metalorgânicas , Neoplasias da Próstata , Zeolitas , Humanos , Masculino , Aminoácidos/genética , Zeolitas/química , DNA/química , Plasmídeos/genética , Compostos Orgânicos/química , Estruturas Metalorgânicas/química , Neoplasias da Próstata/genética
3.
ACS Appl Mater Interfaces ; 15(23): 27670-27686, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37262346

RESUMO

An improved vaccine is urgently needed to replace the now more than 100-year-old Bacillus Calmette-Guérin (BCG) vaccine against tuberculosis (TB) disease, which represents a significant burden on global public health. Mycolic acid, or cord factor trehalose 6,6' dimycolate (TDM), a lipid component abundant in the cell wall of the pathogen Mycobacterium tuberculosis (MTB), has been shown to have strong immunostimulatory activity but remains underexplored due to its high toxicity and poor solubility. Herein, we employed a novel strategy to encapsulate TDM within a cubosome lipid nanocarrier as a potential subunit nanovaccine candidate against TB. This strategy not only increased the solubility and reduced the toxicity of TDM but also elicited a protective immune response to control MTB growth in macrophages. Both pre-treatment and concurrent treatment of the TDM encapsulated in lipid monoolein (MO) cubosomes (MO-TDM) (1 mol %) induced a strong proinflammatory cytokine response in MTB-infected macrophages, due to epigenetic changes at the promoters of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) in comparison to the untreated control. Furthermore, treatment with MO-TDM (1 mol %) cubosomes significantly improved antigen processing and presentation capabilities of MTB-infected macrophages to CD4 T cells. The ability of MO-TDM (1 mol %) cubosomes to induce a robust innate and adaptive response in vitro was further supported by a mathematical modeling study predicting the vaccine efficacy in vivo. Overall, these results indicate a strong immunostimulatory effect of TDM when delivered through the lipid nanocarrier, suggesting its potential as a novel TB vaccine.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Idoso de 80 Anos ou mais , Fatores Corda/farmacologia , Estudos Prospectivos , Tuberculose/tratamento farmacológico , Tuberculose/prevenção & controle , Citocinas
4.
Biosens Bioelectron ; 100: 556-564, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29020666

RESUMO

The development of reliable and ultrasensitive detection marker for mercury ions (Hg2+) in drinking water is of great interest for toxicology assessment, environmental protection and human health. Although many Hg2+ detection methods have been developed, only few offer sensitivities below 1pM. Herein, we describe a simple histidine (H) conjugated perylene diimide (PDI) bolaamphiphile (HPH) as a dual-responsive optical marker to develop highly selective and sensitive probe as visible (sol-to-gel transformation), fluorescence and SERS-based Hg2+sensor platform in the water. Remarkably, HPH as a SERS marker supported on Au deposited monodispersed nanospheres monolayers (Au-MNM) of polystyrene offers an unprecedented selectivity and the best ever reported detection limit (LOD) of 60 attomolar (aM, 0.01 parts-per-quadrillion (ppq)) for Hg2+ in water. This is ten orders of magnitude lower than the United States Environmental Protection Agency (USEPA) tolerance limit of Hg2+ in drinking water (10nM, 2 ppb). This simple and effective design principle of host-guest interactions driven fluorescence and SERS-based detection may inspire the future molecular engineering strategies for the development of ultrasensitive toxic analyte sensor platforms.


Assuntos
Histidina/análogos & derivados , Mercúrio/análise , Análise Espectral Raman/métodos , Poluentes Químicos da Água/análise , Técnicas Biossensoriais/métodos , Água Potável/análise , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Transição de Fase , Água/análise
5.
ACS Appl Mater Interfaces ; 9(32): 27014-27026, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28741353

RESUMO

Tetragonal BaTiO3 spheroids synthesized by a facile hydrothermal route using Tween 80 were observed to be polydispersed with a diameter in the range of ∼15-75 nm. Thereon, BaTiO3 spheroids were decorated with different percentages of Ag@CuO by wet impregnation, and their affinity toward carbon dioxide (CO2) gas when employed as sensitive layers in a microsensor was investigated. The results revealed that the metal nanocomposite-based sensor had an exceptional stability and sensitivity toward CO2 gas (6-fold higher response), with appreciable response and recovery times (<10 s) and higher repeatability (98%) and accuracy (96%) at a low operating temperature of 120 °C, compared to those of pure BaTiO3 and CuO. Such improved gas-sensing performances even at a very low concentration (∼700 ppm) is attributable to both the chemical and electrical contributions of Ag@CuO forming intermittent nanointerfaces with BaTiO3 spheroids, exhibiting unique structural stability. The CO2-sensing mechanism of CuO/BaTiO3 nanocomposite was studied by the diffuse reflectance infrared Fourier transform spectroscopy technique that established the reaction of CO2 with BaO and CuO to form the respective carbonate species that is correlated with the change in material resistance consequently monitored as sensor response.

6.
Langmuir ; 31(39): 10922-30, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26073157

RESUMO

p-Type Cu2O/n-type ZnO core/shell photocatalysts has been demonstrated to be an efficient photocatalyst as a result of their interfacial structure tendency to reduce the recombination rate of photogenerated electron-hole pairs. Monodispersed Cu2O nanocubes were synthesized and functioned as the core, on which ZnO nanoparticles were coated as the shells having varying morphologies. The evenly distributed ZnO decoration as well as assembled nanospheres of ZnO were carried out by changing the molar concentration ratio of Zn/Cu. The results indicate that the photocatalytic performance is initially increased, owing to formation of small ZnO nanoparticles and production of efficient p-n junction heterostructures. However, with increasing Zn concentration, the decorated ZnO nanoparticles tend to form large spherical assemblies resulting in decreased photocatalytic activity due to the interparticle recombination between the agglomerated ZnO nanoparticles. Therefore, photocatalytic activity of Cu2O/ZnO heterostructures can be optimized by controlling the assembly and morphology of the ZnO shell.

7.
Australas Phys Eng Sci Med ; 34(2): 243-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21465276

RESUMO

There has been increasing interest in the use of a nanoparticle-based media as a contrast-enhancement agent in medical imaging, particularly with gold Nanoparticles in radiography. Particularly attractive, is the prospect of modifying the surface of these materials with monoclonal antibodies to preferentially bind the nanoparticles to tumour sites. These materials differ from conventional molecular agents in their ability to be modified with cell specificity, or tailored for size and shape for maximum uptake. We investigated the consideration that quantum confinement electronic effects in nanometre-sized metals might have an effect on the integrated photon attenuation of gold atoms; in the same manner as these materials affect X-ray absorption and scattering as seen in X-ray absorption spectroscopy. This experiment has been designed to identify any effect on contrast enhancement that might result from employing gold nanoparticles with a variety of sizes. Spherical particles and nanorods were synthesised for this application. Image contrast enhancement was quantified by contrast-to-noise ratio in computed radiography. Results are consistent with existing measurements of gold nanoparticle contrast enhancement in radiography. No significant variation in attenuation depending on particle size was observed. Findings indicate that nanoparticle-based contrast agents in the size range 4-30 nm-can be synthesised for maximum stability or cell specificity (directed cellular uptake) without consideration of effect of size on contrast enhancement.


Assuntos
Meios de Contraste/química , Ouro/química , Nanopartículas Metálicas/química , Radiografia/métodos , Análise de Variância , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Intensificação de Imagem Radiográfica/métodos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA