Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Vector Borne Zoonotic Dis ; 24(1): 55-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37844065

RESUMO

Background: Assessing the potential for mosquitoes to transmit medically important arboviruses is essential for understanding their threat to human populations. Currently, vector competence studies are typically performed by collecting saliva using a glass capillary tube system which involves sacrificing the mosquito at the time of saliva collection allowing only a single data point. These techniques also require handling infected mosquitoes and glass capillaries, constituting a safety risk. Materials and Methods: To improve the efficiency and safety of assessing vector competence, a novel containment and saliva collection approach for individually housed mosquitoes was developed. The improved housing, allowing longitudinal tracking of individual mosquitoes, consists of a 12-well Corning polystyrene plate sealed with a three-dimensional printed lid that holds organdy netting firmly against the rims of the wells. Results: This method provides excellent mosquito survival for five species of mosquitoes, with at least 79% of each species tested surviving for more than 2 weeks, comparable to the carton survival rates of ≥76%. When the plate housing system was used to assess vector infection, replication of West Nile virus (WNV) in mosquito tissues was similar to traditional containment mosquito housing. Mosquito saliva was collected using either blotting paper pads or traditional glass capillaries to assay viral transmission. The blotting paper collection showed similar or better sensitivity than the capillary method; in addition, longitudinal saliva samples could be collected from individual mosquitoes housed in the 12-well plates. Conclusions: The improved housing and saliva collection technique described herein provides a safer and more informative method for determining vector competence in mosquitoes.


Assuntos
Arbovírus , Culex , Culicidae , Vírus do Nilo Ocidental , Animais , Humanos , Mosquitos Vetores , Saliva , Habitação
3.
Diseases ; 11(1)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36810535

RESUMO

As a part of a systematic study of mosquitoes and associated viruses in Uganda, a virus was isolated from a pool of Mansonia uniformis collected in July 2017, in the Kitgum District of northern Uganda. Sequence analysis determined that the virus is Yata virus (YATAV; Ephemerovirus yata; family Rhabdoviridae). The only previous reported isolation of YATAV was in 1969 in Birao, Central African Republic, also from Ma. uniformis mosquitoes. The current sequence is over 99% identical at the nucleotide level to the original isolate, indicating a high level of YATAV genomic stability.

4.
Microbiol Resour Announc ; 11(12): e0069222, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36326501

RESUMO

Despite causing numerous large outbreaks in the 20th century, few isolates of o'nyong nyong virus (ONNV) have been fully sequenced. Here, we report the complete genome sequence of an isolate of ONNV obtained from a febrile patient in northwest Uganda in 2017, designated ONNV UVRI0804.

5.
PLoS One ; 15(5): e0232991, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32407359

RESUMO

Following nerve stimulation, there are two distinct phases of Ca2+-dependent neurotransmitter release: a fast, synchronous release phase, and a prolonged, asynchronous release phase. Each of these phases is tightly regulated and mediated by distinct mechanisms. Synaptotagmin 1 is the major Ca2+ sensor that triggers fast, synchronous neurotransmitter release upon Ca2+ binding by its C2A and C2B domains. It has also been implicated in the inhibition of asynchronous neurotransmitter release, as blocking Ca2+ binding by the C2A domain of synaptotagmin 1 results in increased asynchronous release. However, the mutation used to block Ca2+ binding in the previous experiments (aspartate to asparagine mutations, sytD-N) had the unintended side effect of mimicking Ca2+ binding, raising the possibility that the increase in asynchronous release was directly caused by ostensibly constitutive Ca2+ binding. Thus, rather than modulating an asynchronous sensor, sytD-N may be mimicking one. To directly test the C2A inhibition hypothesis, we utilized an alternate C2A mutation that we designed to block Ca2+ binding without mimicking it (an aspartate to glutamate mutation, sytD-E). Analysis of both the original sytD-N mutation and our alternate sytD-E mutation at the Drosophila neuromuscular junction showed differential effects on asynchronous release, as well as on synchronous release and the frequency of spontaneous release. Importantly, we found that asynchronous release is not increased in the sytD-E mutant. Thus, our work provides new mechanistic insight into synaptotagmin 1 function during Ca2+-evoked synaptic transmission and demonstrates that Ca2+ binding by the C2A domain of synaptotagmin 1 does not inhibit asynchronous neurotransmitter release in vivo.


Assuntos
Proteínas de Drosophila/metabolismo , Neurotransmissores/metabolismo , Sinaptotagmina I/metabolismo , Substituição de Aminoácidos , Animais , Animais Geneticamente Modificados , Sítios de Ligação/genética , Cálcio/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genes de Insetos , Mutagênese Sítio-Dirigida , Domínios Proteicos , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/química , Sinaptotagmina I/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA