Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39195038

RESUMO

Polybenzoxazine (PBz) aerogels hold immense potential, but their conventional production methods raise environmental and safety concerns. This research addresses this gap by proposing an eco-friendly approach for synthesizing high-performance carbon derived from polybenzoxazine. The key innovation lies in using eugenol, ethylene diamine, and formaldehyde to create a polybenzoxazine precursor. This eliminates hazardous solvents by employing the safer dimethyl sulfoxide. An acidic catalyst plays a crucial role, not only in influencing the microstructure but also in strengthening the material's backbone by promoting inter-chain connections. Notably, this method allows for ambient pressure drying, further enhancing its sustainability. The polybenzoxazine acts as a precursor to produce two different carbon materials. The carbon material produced from the calcination of PBz is denoted as PBZC, and the carbon material produced from the gelation and calcination of PBz is denoted as PBZGC. The structural characterization of these carbon materials was analyzed through different techniques, such as XRD, Raman, XPS, and BET analyses. BET analysis showed increased surface of 843 m2 g-1 for the carbon derived from the gelation method (PBZGC). The electrochemical studies of PBZC and PBZGC imply that a well-defined morphology, along with suitable porosity, paves the way for increased conductivity of the materials when used as electrodes for supercapacitors. This research paves the way for utilizing heteroatom-doped, polybenzoxazine aerogel-derived carbon as a sustainable and high-performing alternative to traditional carbon materials in energy storage devices.

2.
Polymers (Basel) ; 16(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39065322

RESUMO

This study presents a promising method for creating high-performance supercapacitor electrodes. The approach involves crafting a unique composite material-nickel-cobalt-layered double hydroxides (NiCo-LDH) grown on carbon nanoballs (CNBs). This is achieved by first creating a special carbon material rich in oxygen and nitrogen from a polybenzoxazine source. At first, eugenol, ethylene diamine and paraformaldehyde undergo Mannich condensation to form the benzoxazine monomer, which undergoes self-polymerization in the presence of heat to produce polybenzoxazine. This was then carbonized and activated to produce CNBs containing heteroatoms. Then, through a hydrothermal technique, NiCo-LDH nanocages are directly deposited onto the CNBs, eliminating the need for complicated templates. The amount of CNBs used plays a crucial role in performance. By optimizing the CNB content to 50%, a remarkable specific capacitance of 1220 F g-1 was achieved, along with excellent rate capability and impressive cycling stability, retaining 86% of its capacitance after 5000 cycles. Furthermore, this NiCo-LDH/CNB composite, when combined with active carbon in a supercapacitor configuration, delivered outstanding overall performance. The exceptional properties of this composite, combined with its simple and scalable synthesis process, position it as a strong contender for next-generation sustainable energy storage devices. The ease of fabrication also opens doors for its practical application in advancing energy storage technologies.

3.
Materials (Basel) ; 17(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998134

RESUMO

Polytetrafluoroethylene (PTFE) is prized for its unique properties in electrical applications, but its natural hydrophobicity poses challenges as it repels water and can cause electrical short circuits, shortening equipment lifespan. In this work, the mentioned issue has been tackled by using two different fluorinated compounds, such as perfluorooctanoic acid (PFOA)/perfluorooctanol (PFOL), along with plasma processing to enhance the surface hydrophilicity (water attraction) of PTFE. This method, demonstrated on Teflon membrane, quickly transformed their surfaces from hydrophobic to hydrophilic in less than 30 s. The treated films achieved a water contact angle saturation of around 80°, indicating a significant increase in water affinity. High-resolution C 1s X-ray photoelectron spectroscopy (XPS) confirmed the formation of new bonds, such as -COOH and -OH, on the surface, responsible for enhanced hydrophilicity. Extended plasma treatment led to further structural changes, evidenced by increased intensity in infrared (IR) and Raman spectra, particularly sensitive to vibrations associated with the C-F bond. Moreover, Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy (ATR-FTIR) showed the formation of surface-linked functional groups, which contributed to the improved water attraction. These findings decisively show that treatment with fluoro-compound along with plasma processing can be considered as a highly effective and rapid method for converting PTFE surfaces from hydrophobic to hydrophilic, facilitating its broader use in various electrical applications.

4.
Gels ; 10(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39057485

RESUMO

In recent years, polybenzoxazine aerogels have emerged as promising materials for various applications. However, their full potential has been hindered by the prevalent use of hazardous solvents during the preparation process, which poses significant environmental and safety concerns. In light of this, there is a pressing need to explore alternative methods that can mitigate these issues and propel the practical utilization of polybenzoxazine aerogels. To address this challenge, a novel approach involving the synthesis of heteroatom self-doped mesoporous carbon from polybenzoxazine has been devised. This process utilizes eugenol, stearyl amine, and formaldehyde to create the polybenzoxazine precursor, which is subsequently treated with ethanol as a safer solvent. Notably, the incorporation of boric acid in this method serves a dual purpose: it not only facilitates microstructural regulation but also reinforces the backbone strength of the material through the formation of intermolecular bridged structures between polybenzoxazine chains. Moreover, this approach allows ambient pressure drying, further enhancing its practicability and environmental friendliness. The resultant carbon materials, designated as ESC-N and ESC-G, exhibit distinct characteristics. ESC-N, derived from calcination, possesses a surface area of 289 m2 g-1, while ESC-G, derived from the aerogel, boasts a significantly higher surface area of 673 m2 g-1. Furthermore, ESC-G features a pore size distribution ranging from 5 to 25 nm, rendering it well suited for electrochemical applications such as supercapacitors. In terms of electrochemical performance, ESC-G demonstrates exceptional potential. With a specific capacitance of 151 F g-1 at a current density of 0.5 A g-1, it exhibits superior energy storage capabilities compared with ESC-N. Additionally, ESC-G displayed a more pronounced rectangular shape in its cyclic voltammogram at a low voltage scanning rate of 20 mV s-1, indicative of enhanced electrochemical reversibility. The impedance spectra of both carbon types corroborated these findings, further validating the superior performance of ESC-G. Furthermore, ESC-G exhibits excellent cycling stability, retaining its electrochemical properties even after 5000 continuous charge-discharge cycles. This robustness underscores its suitability for long-term applications in supercapacitors, reaffirming the viability of heteroatom-doped polybenzoxazine aerogels as a sustainable alternative to traditional carbon materials.

5.
Polymers (Basel) ; 16(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891410

RESUMO

Polymer gels are cross-linked polymer networks swollen by a solvent. These cross-linked networks are interconnected to produce a three-dimensional molecular framework. It is this cross-linked network that provides solidity to the gel and helps to hold the solvent in place. The present work deals with the fabrication of polybenzoxazine carbon (PBzC)-based gels that could function as a solid electrode in flexible supercapacitors (SCs). With the advantage of molecular design flexibility, polybenzoxazine-based carbon containing different hetero-atoms was synthesized. A preliminary analysis of PBzC including XRD, Raman, XPS, and SEM confirmed the presence of hetero-atoms with varying pore structures. These PBz-carbons, upon reaction with polyvinyl alcohol (PVA) and acrylamide (AAm), produced a composite polymer hydrogel, PVA/poly (AAm)/PBzC. The performance of the synthesized hydrogel was analyzed using a three-electrode system. PVA/poly (AAm)/PBzC represented the working electrode. The inclusion of PBzC within the PVA/poly (AAm) matrix was evaluated by cyclic voltammetry and galvanostatic charge/discharge measurements. A substantial increase in the CV area and a longer charge/discharge time signified the importance of PBzC inclusion. The PVA/poly (AAm)/PBzC electrode exhibited larger specific capacitance (Cs) of 210 F g-1 at a current density of 0.5 A g-1 when compared with the PVA/poly (AAm) electrode [Cs = 92 F g-1]. These improvements suggest that the synthesized composite hydrogel can be used in flexible supercapacitors requiring light weight and wearability.

6.
Gels ; 10(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38534615

RESUMO

Polybenzoxazines (Pbzs) are advanced forms of phenolic resins that possess many attractive properties, including thermal-induced self-curing polymerization, void-free polymeric products and absence of by-product formation. They also possess high Tg (glass transition temperature) and thermal stability. But the produced materials are brittle in nature. In this paper, we present our attempt to decrease the brittleness of Pbz by blending it with polyvinylalcohol (PVA). Benzoxazine monomer (Eu-Ed-Bzo) was synthesized by following a simple Mannich condensation reaction. The formation of a benzoxazine ring was confirmed by FT-IR and NMR spectroscopic analyses. The synthesized benzoxazine monomer was blended with PVA in order to produce composite films, PVA/Pbz, by varying the amount of benzoxazine monomer (1, 3 and 5 wt. % of PVA). The property of the composite films was studied using various characterization techniques, including DSC, TGA, water contact angle analysis (WCA) and SEM. WCA analysis proved that the hydrophobic nature of Pbz (value) was transformed to hydrophilic (WCA of PVA/Pbz5 is 35.5°). These composite films could play the same role as flexible electrolytes in supercapacitor applications. For this purpose, the composite films were immersed in a 1 M KOH solution for 12 h in order to analyze their swelling properties. Moreover, by using this swelled gel, a symmetric supercapacitor, AC//PVA/Pbz5//AC, was constructed, exhibiting a specific capacitance of 170 F g-1.

7.
Polymers (Basel) ; 16(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38337318

RESUMO

Supercapacitors (SCs) are considered as emerging energy storage devices that bridge the gap between electrolytic capacitors and rechargeable batteries. However, due to their low energy density, their real-time usage is restricted. Hence, to enhance the energy density of SCs, we prepared hetero-atom-doped carbon along with bimetallic oxides at different calcination temperatures, viz., HC/NiCo@600, HC/NiCo@700, HC/NiCo@800 and HC/NiCo@900. The material produced at 800 °C (HC/NiCo@800) exhibits a hierarchical 3D flower-like morphology. The electrochemical measurement of the prepared materials was performed in a three-electrode system showing an enhanced specific capacitance for HC/NiCo@600 (Cs = 1515 F g-1) in 1 M KOH, at a current density of 1 A g-1, among others. An asymmetric SC device was also fabricated using HC/NiCo@800 as anode and HC as cathode (HC/NiCo@600//HC). The fabricated device had the ability to operate at a high voltage window (~1.6 V), exhibiting a specific capacitance of 142 F g-1 at a current density of 1 A g-1; power density of 743.11 W kg-1 and energy density of 49.93 Wh kg-1. Altogether, a simple strategy of hetero-atom doping and bimetallic inclusion into the carbon framework enhances the energy density of SCs.

8.
Polymers (Basel) ; 16(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38399894

RESUMO

A novel porous carbon, derived from polybenzoxazine and subjected to hydrogen peroxide treatment, has been meticulously crafted to serve dual functions as a supercapacitor and a CO2 capture material. While supercapacitors offer a promising avenue for electrochemical energy storage, their widespread application is hampered by relatively low energy density. Addressing this limitation, our innovative approach introduces a three-dimensional holey carbon ball framework boasting a hierarchical porous structure, thereby elevating its performance as a metal-free supercapacitor electrode. The key to its superior performance lies in the intricate design, featuring a substantial ion-accessible surface area, well-established electron and ion transport pathways, and a remarkable packing density. This unique configuration endows the holey carbon ball framework electrode with an impressive capacitance of 274 F g-1. Notably, the electrode exhibits outstanding rate capability and remarkable longevity, maintaining a capacitance retention of 82% even after undergoing 5000 cycles in an aqueous electrolyte. Beyond its prowess as a supercapacitor, the hydrogen peroxide-treated porous carbon component reveals an additional facet, showcasing an exceptional CO2 adsorption capacity. At temperatures of 0 and 25 °C, the carbon material displays a CO2 adsorption capacity of 4.4 and 4.2 mmol/g, respectively, corresponding to equilibrium pressures of 1 bar. This dual functionality renders the porous carbon material a versatile and efficient candidate for addressing the energy storage and environmental challenges of our time.

9.
Polymers (Basel) ; 15(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37835923

RESUMO

In this paper, we describe the surface modification of polytetrafluoroethylene (PTFE) through the plasma treatment process. Several parameters including different active gases, RF power, distance between the plasma source and sample, and plasma duration were optimized to reduce the hydrophobic nature of PTFE. Three different active gases were used (i.e., N2, O2, and (Ar+H2)); N2 was effective to reduce the hydrophobicity of PTFE within a shorter plasma duration of 2 min. Several surface characterizations including ATR-FTIR, water contact angle, FE-SEM, and XPS were utilized to verify the neat and modified PTFE surface after plasma treatment. The plasma treatment using N2 as an active gas improved the wettability of the PTFE membrane, showing a water contact angle of 109.5° when compared with the neat PTFE (141.9°). The SEM images of plasma-treated PTFE showed greater modifications on the surface indicating non-uniform fiber alignment and torn fibers at several places. The obtained results confirm the fact that plasma treatment is an effective way to modify the PTFE surface without altering its bulk property.

10.
Polymers (Basel) ; 15(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37688214

RESUMO

The research community is actively exploring ways to create cost-efficient and high-performing electrocatalysts for the oxygen evolution reaction. In this investigation, an innovative technique was employed to produce heteroatom-doped carbon containing NiCo oxides, i.e., HC/NiCo oxide@800, in the form of a three-dimensional hierarchical flower. This method involved the reduction of a bimetallic (Ni, Co) metal-organic framework, followed by carefully controlled oxidative calcination. The resulting porous flower-like structure possess numerous advantages, such as expansive specific surface areas, excellent conductivity, and multiple electrocatalytic active sites for both hydrogen and oxygen evolution reactions. Moreover, the presence of oxygen vacancies within HC/NiCo oxide@800 significantly enhances the conductivity of the NiCo substance, thus expediting the kinetics of both the processes. These benefits work together synergistically to enhance the electrocatalytic performance of HC/NiCo oxide@800. Empirical findings reveal that HC/NiCo oxide@800 electrocatalysts demonstrate exceptional catalytic activity, minimal overpotential, and remarkable stability when deployed for both hydrogen evolution and oxygen evolution reactions in alkaline environments. This investigation introduces a fresh avenue for creating porous composite electrocatalysts by transforming metal-organic frameworks with controllable structures. This approach holds promise for advancing electrochemical energy conversion devices by facilitating the development of efficient and customizable electrocatalytic materials.

11.
Polymers (Basel) ; 15(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37514504

RESUMO

Proper design of multifunctional electrocatalyst that are abundantly available on earth, cost-effective and possess excellent activity and electrochemical stability towards oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are required for effective hydrogen generation from water-splitting reaction. In this context, the work herein reports the fabrication of nitrogen-rich porous carbon (NRPC) along with the inclusion of non-noble metal-based catalyst, adopting a simple and scalable methodology. NRPC containing nitrogen and oxygen atoms were synthesized from polybenzoxazine (Pbz) source, and non-noble metal(s) are inserted into the porous carbon surface using hydrothermal process. The structure formation and electrocatalytic activity of neat NRPC and monometallic and bimetallic inclusions (NRPC/Mn, NRPC/Ni and NRPC/NiMn) were analyzed using XRD, Raman, XPS, BET, SEM, TEM and electrochemical measurements. The formation of hierarchical 3D flower-like morphology for NRPC/NiMn was observed in SEM and TEM analyses. Especially, NRPC/NiMn proves to be an efficient electrocatalyst providing an overpotential of 370 mV towards OER and an overpotential of 136 mV towards HER. Moreover, it also shows a lowest Tafel slope of 64 mV dec-1 and exhibits excellent electrochemical stability up to 20 h. The synergistic effect produced by NRPC and bimetallic compounds increases the number of active sites at the electrode/electrolyte interface and thus speeds up the OER process.

12.
Materials (Basel) ; 16(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36984131

RESUMO

Candida albicans are highly widespread pathogenic fungi in humans. Moreover, its developed biofilm causes serious clinical problems, leading to drug failure caused by its inherent drug tolerance. Hence, the inhibition of biofilm formation and virulence characteristics provide other means of addressing infections. Polymer composites (PCs) derived from natural products have attracted increasing interest in the scientific community, including antimicrobial applications. PCs are a good alternative approach to solving this challenge because of their excellent penetration power inside biofilms. The main objectives of this study were to synthesize a novel curcumin-based polybenzoxazine polymer composite (poly(Cu-A) PC) using Mannich condensation reaction and evaluate their potency as an antibiofilm and anticorrosive candidate against C. albicans. In addition, their anticorrosive efficacy was also explored. PC exhibited significant antibiofilm efficacy versus C. albicans DAY185 by the morphologic changing of yeast to hyphae, and>90% anticorrosive efficacy was observed at a higher dose of PC. These prepared PC were safe in vivo against Caenorhabditis elegans and Raphanus raphanistrum. The study shows that a polybenzoxazine polymer composite has the potential for controlling biofilm-associated fungal infections and virulence by C. albicans, and opens a new avenue for designing PCs as antifungal, anticorrosive agents for biofilm-associated fungal infections and industrial remediation.

13.
Polymers (Basel) ; 15(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36987344

RESUMO

Through a solution method utilizing benzoxazine chemistry, heteroatoms containing porous carbons (HCPCs) were synthesized from melamine, eugenol and formaldehyde, followed by carbonization in a nitrogen atmosphere and chemical activation with KOH at three different activation temperatures, 700, 800 and 900 °C. The introduction of melamine and eugenol to the monomer produced structurally bonded nitrogen and oxygen in porous carbons. Changing the calcination temperature can alter the doping level of heteroatoms and the particle size. These carbon materials exhibit large pore size distributions, tunable pore structure, high nitrogen and oxygen contents and high surface areas, which make them suitable for use as electrode materials in supercapacitors. As a result of activating at 800 °C, the sample HCPC-800 exhibits a high specific surface area of 984 m2/g, high oxygen and nitrogen content (3.64-6.26 wt.% and 10.61-13.65 wt.%), hierarchical pore structure, high degree of graphitization and good electrical conductivity. An outstanding rate capability is also demonstrated, as well as incredible longevity, retaining the capacitance up to 83% even after 5000 cycles in a solution containing 1 M H2SO4. Moreover, the activated porous carbon containing nitrogen exhibits a CO2 adsorption capacity of 3.6 and 3.5 mmol/g at 25 °C and 0 °C, respectively, which corresponds to equilibrium pressures of 1 bar.

14.
Polymers (Basel) ; 15(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36850133

RESUMO

Despite the fact that amino cellulose (AC) is biodegradable, biocompatible, and has excellent film-forming properties, AC films have poor mechanical properties and are not thermally stable. An AC-based composite film prepared from AC and curcumin-stearylamine based benzoxazine (C-st) is reported in order to improve its performance and promote its application. As starting materials, C-st and AC were used to produce a C-st/AC composite film possessing a synergistic property through chemical cross-linking and hydrogen bonds. Two salient features with respect to the curing behavior were obtained. Firstly, the onset of curing was reduced to 163 °C when the benzoxazine monomer was synthesized from fully bio-based precursors (such as curcumin and stearylamine). Secondly, a synergistic effect in curing behavior was obtained by mixing C-st with AC. As a result of tensile tests and thermal analysis, the poly(C-st) benefited the composite films with pronounced mechanical and thermal properties, even at elevated temperatures. There was a 2.5-fold increase in tensile strength compared to the AC film, indicating that the composite films have the potential to be used for functional purposes. These poly(C-st)/AC films with improved mechanical and thermal properties have the ability to replace naturally occurring polymer films in film-related applications.

15.
Polymers (Basel) ; 15(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36850303

RESUMO

Polybenzoxazines (Pbzs) are considered as an advanced class of thermosetting phenolic resins as they overcome the shortcomings associated with novolac and resole type phenolic resins. Several advantages of these materials include curing without the use of catalysts, release of non-toxic by-products during curing, molecular design flexibility, near-zero shrinkage of the cured materials, low water absorption and so on. In spite of all these advantages, the brittleness of Pbz is a knotty problem that could be solved by blending with other polymers. Chitosan (Ch), has been extensively investigated in this context, but its thermal and mechanical properties rule out its practical applications. The purpose of this work is to fabricate an entirely bio-based Pbz films by blending chitosan with benzoxazine (Bzo), which is synthesized from curcumin and furfuryl amine (curcumin-furfurylamine-based Bzo, C-fu), by making use of a benign Schiff base chemistry. FT-IR and 1H-NMR spectroscopy were used to confirm the structure of C-fu. The impact of chitosan on benzoxazine polymerization was examined using FT-IR and DSC analyses. Further evidence for synergistic interactions was provided by DSC, SEM, TGA, and tensile testing. By incorporating C-fu into Ch, Ch-grafted-poly(C-fu) films were obtained with enhanced chemical resistance and tensile strength. The bio-based polymer films produced inhibited the growth of Staphylococcus aureus and Escherichia coli, by reversible labile linkages, expanding Ch galleries, and releasing phenolic species, which was 125 times stronger than bare Ch. In addition, synthesized polybenzoxazine films [Ch/Poly(C-fu)] showed significant dose-dependent antibiofilm activity against S. aureus and E. coli as determined by confirmed by confocal laser scanning microscopy (CLSM). This study suggests that bio-based Ch-graft-polymer material provide improved anti-bacterial property and characteristics that may be considered as a possibility in the near future for wound healing and implant applications.

16.
Int J Biol Macromol ; 170: 664-673, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33387546

RESUMO

A new class of bio based polymer blends have been prepared from a modified chitosan based benzoxazine precursor (E-ch) and amino cellulose (AC). AC was derived from cellulose with excellent film-forming, biocompatibility and biodegradability property. E-ch was synthesized from eugenol, modified chitosan and paraformaldehyde. The chemical structure was confirmed by FT-IR and 1H NMR analyses. Bio films were prepared by mixing E-ch and AC with diluted acetic acid, in different ratios. These films were further cross-linked by applying heat, via ring-opening polymerization of benzoxazine without any curing agent. FT-IR and DSC were used to study the effects of AC on E-ch to form cross-linked network polymer films [poly(E-ch)/AC]. Hydrogen bonding interactions were found to exist between poly(E-ch) and AC. These kinds of interactions considerably improve the mechanical and thermal properties and char yield of the polymer films. Additionally, these biofilms; poly(E-ch) and poly(E-ch)/AC have been examined for bio-activity with S. aureus. It is confirmed that these bio-films are effective in inhibiting bio-film related infection. In a similar way, both the bio-films act against C. albicans and thus avoid the formation of mycological infection. These results expose that poly(E-ch) and AC bio-films are capable to act as anti-microbial and anti-fungal agents.


Assuntos
Antibacterianos/química , Antifúngicos/química , Benzoxazinas/química , Celulose/química , Polímeros/química , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Benzoxazinas/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Quitosana/química , Eugenol/química , Formaldeído/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA