RESUMO
In a 2018 survey, U.S. Food and Drug Administration (FDA) identified microbial contamination in 42 (49%) of 85 unopened tattoo and permanent makeup (PMU) inks purchased from 13 manufacturers in the US between November 2015 and April 2016. To confirm the results of our previous survey, we evaluated the level of microbial contamination in an additional 27 samples from 10 manufacturers from September 2017 to December 2017, including 21 unopened tattoo and PMU inks which were selected based on our previous survey results and 6 ink diluents that were not previously analysed. Aerobic plate count and enrichment culture methods from the FDA's Bacteriological Analytical Manual revealed 11 (52%) out of 21 inks, from six manufacturers, were contaminated with micro-organisms, with contamination levels up to 3·6 × 108 CFU per gram, consistent with our previous survey results. We identified 25 bacterial strains belonging to nine genera and 19 species. Strains of Bacillus sp. (11 strains, 44%) were dominant, followed by Paenibacillus sp. (5 strains, 20%). Clinically relevant strains, such as Kocuria rhizophila and Oligella ureolytica, were also identified, as similar to the findings in our previous survey. No microbial contamination was detected in any of the six ink diluents.
Assuntos
Bactérias/isolamento & purificação , Corantes/química , Tinta , Tatuagem/efeitos adversos , Alcaligenaceae/genética , Alcaligenaceae/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Corantes/efeitos adversos , Contaminação de Medicamentos , Seguimentos , Humanos , Micrococcaceae/genética , Micrococcaceae/isolamento & purificaçãoRESUMO
In an attempt to assess cosmetics containing 'nontraditional' preservatives, 93 eye area cosmetic products were selected based on labelled or marketed claims that these products were 'green', 'natural', 'paraben-free', 'preservative-free' or contained nontraditional preservatives (e.g. botanical extracts). Products were analysed for water activity, pH and microbiological content, which included enumeration of aerobic micro-organisms, detection of microbial growth after a 7-day enrichment and identification of microbial isolates. The survey found that 60% (56/93) of the eye area cosmetics were free of microbiological growth under test conditions, 32% (30/93) showed the presence of micro-organisms at low levels (<100 CFU per ml or g) and 8% (7/93) showed microbiological growth at higher levels (> 100 CFU per ml or g). Gram-positive bacteria such as Bacillus and Staphylococcus were the dominant genera identified in these cosmetic products, whereas Gram-negative species were relatively uncommon. The survey found a positive association between lower water activity cosmetics and the presence of micro-organisms in these products. Similarly, colour cosmetics were more likely to contain micro-organisms than noncolour cosmetics. The most represented micro-organisms in the survey were from genus Bacillus, suggesting that the natural raw materials are the likely source of observed microbial loads. SIGNIFICANCE AND IMPACT OF THE STUDY: In the United States, cosmetic products are regulated postmarket; therefore, surveillance programmes are one of FDA's most important tools for monitoring microbiological safety of cosmetics. 'Traditional' preservatives, such as parabens and formaldehyde releasers, are perceived unfavourably by some consumers, resulting in cosmetic manufacturers increasingly using 'nontraditional' preservatives. FDA conducted an analytical survey of eye area cosmetics that claimed to be free of traditional preservatives and determined microbiological loads in tested products. This study explores the association of microbial loads with the physical and chemical characteristics of the cosmetic products, and points to the limits of preservative activity in cosmetics.
Assuntos
Bacillus/isolamento & purificação , Cosméticos/análise , Conservantes Farmacêuticos/farmacologia , Staphylococcus/isolamento & purificação , Bacillus/crescimento & desenvolvimento , Formaldeído/farmacologia , Humanos , Parabenos/farmacologia , Staphylococcus/crescimento & desenvolvimento , Inquéritos e QuestionáriosAssuntos
Doença de Alzheimer/metabolismo , Fibrinolisina/fisiologia , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Humanos , Modelos Biológicos , Plasminogênio/metabolismo , Estrutura Terciária de Proteína , Ativador de Plasminogênio Tecidual/química , Ativador de Plasminogênio Tecidual/metabolismo , Regulação para CimaRESUMO
Maintaining high Ca(2+) concentrations in the lumen of the endoplasmic reticulum is important for protein synthesis and transport. We identified a lethal complementation group recovered in a screen for mutations that reduce Notch activity as loss-of-function alleles of the Drosophila Ca(2+)-ATPase gene Ca-P60A. Analysis of Ca-P60A mutants indicates that Ca(2+)-ATPase is essential for cell viability and tissue morphogenesis during development. Cultured cells treated with Ca(2+)-ATPase inhibitors exhibit impaired Notch cleavage and receptor trafficking to the cell surface, explaining the genetic interaction between Ca(2+)-ATPase and Notch. Notch and several other transmembrane proteins are mislocalized in tissue clones homozygous for Ca-P60A mutations, demonstrating a general effect on membrane protein trafficking caused by a deficiency in Ca(2+)-ATPase.
Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Drosophila/enzimologia , Proteínas de Membrana/metabolismo , Animais , Linhagem Celular , Doença de Darier/genética , Drosophila/genética , Proteínas de Drosophila , Inibidores Enzimáticos/farmacologia , Genes de Insetos , Genes Letais , Humanos , Imuno-Histoquímica , Indóis/farmacologia , Microscopia Eletrônica de Varredura , Mutação , Fenótipo , Receptores de Superfície Celular/metabolismo , Receptores Notch , Transdução de Sinais , Tapsigargina/farmacologia , TransfecçãoRESUMO
Eukaryotic flagella are complex organelles composed of more than 200 polypeptides. Little is known about the regulatory mechanisms governing synthesis of the flagellar protein subunits and their assembly into this complex organelle. The unicellular green alga Chlamydomonas reinhardtii is the premier experimental model system for studying such cellular processes. When acid shocked, C. reinhardtii excises its flagella, rapidly and coordinately activates transcription of a set of flagellar genes, and ultimately regenerates a new flagellar pair. To define functionally the regulatory sequences that govern induction of the set of genes after acid shock, we analyzed the alpha1-tubulin gene promoter. To simplify transcriptional analysis in vivo, we inserted the selectable marker gene ARG7 on the same plasmid with a tagged alpha1-tubulin gene and stably introduced it into C. reinhardtii cells. By deletion of various sequences, two promoter regions (-176 to -122 and -85 to -16) were identified as important for induction of the tagged alpha1-tubulin gene. Deleting the region between -176 and -122 from the transcription start site resulted in an induction level which was only 45 to 70% of that of the resident gene. Deleting the region upstream of -56 resulted in a complete loss of inducibility without affecting basal expression. The alpha1-tubulin promoter region from -85 to -16 conferred partial acid shock inducibility to an arylsulfatase (ARS) reporter gene. These results show that induction of the alpha1-tubulin gene after acid shock is a complex response that requires diverse sequence elements.