Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6163, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789019

RESUMO

Investigations of abiotic and biotic contributions to dissolved organic carbon (DOC) are required to constrain microbial habitability in continental subsurface fluids. Here we investigate a large (101-283 mg C/L) DOC pool in an ancient (>1Ga), high temperature (45-55 °C), low biomass (102-104 cells/mL), and deep (3.2 km) brine from an uranium-enriched South African gold mine. Excitation-emission matrices (EEMs), negative electrospray ionization (-ESI) 21 tesla Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), and amino acid analyses suggest the brine DOC is primarily radiolytically oxidized kerogen-rich shales or reefs, methane and ethane, with trace amounts of C3-C6 hydrocarbons and organic sulfides. δ2H and δ13C of C1-C3 hydrocarbons are consistent with abiotic origins. These findings suggest water-rock processes control redox and C cycling, helping support a meagre, slow biosphere over geologic time. A radiolytic-driven, habitable brine may signal similar settings are good targets in the search for life beyond Earth.

2.
Astrobiology ; 22(1): 25-34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34591607

RESUMO

Life emerged in a geochemical context, possibly in the midst of mineral substrates. However, it is not known to what extent minerals and dissolved inorganic ions could have facilitated the evolution of biochemical reactions. Herein, we have experimentally shown that iron sulfide minerals can act as electron transfer agents for the reduction of the ubiquitous biological protein cofactor nicotinamide adenine dinucleotide (NAD+) under anaerobic prebiotic conditions, observing the NAD+/NADH redox transition by using ultraviolet-visible spectroscopy and 1H nuclear magnetic resonance. This reaction was mediated with iron sulfide minerals, which were likely abundant on early Earth in seafloor and hydrothermal settings; and the NAD+/NADH redox reaction occurred in the absence of UV light, peptide ligand(s), or dissolved mediators. To better understand this reaction, thermodynamic modeling was also performed. The ability of an iron sulfide mineral to transfer electrons to a biochemical cofactor that is found in every living cell demonstrates how geologic materials could have played a direct role in the evolution of certain cofactor-driven metabolic pathways.


Assuntos
Ferro , NAD , Ferro/metabolismo , Minerais , NAD/química , NAD/metabolismo , Oxirredução , Enxofre
3.
Astrobiology ; 21(8): 954-967, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34357788

RESUMO

As the exploration of Mars and other worlds for signs of life has increased, the need for a common nomenclature and consensus has become significantly important for proper identification of nonterrestrial/non-Earth biology, biogenic structures, and chemical processes generated from biological processes. The fact that Earth is our single data point for all life, diversity, and evolution means that there is an inherent bias toward life as we know it through our own planet's history. The search for life "as we don't know it" then brings this bias forward to decision-making regarding mission instruments and payloads. Understandably, this leads to several top-level scientific, theoretical, and philosophical questions regarding the definition of life and what it means for future life detection missions. How can we decide on how and where to detect known and unknown signs of life with a single biased data point? What features could act as universal biosignatures that support Darwinian evolution in the geological context of nonterrestrial time lines? The purpose of this article is to generate an improved nomenclature for terrestrial features that have mineral/microbial interactions within structures and to confirm which features can only exist from life (biotic), features that are modified by biological processes (biogenic), features that life does not affect (abiotic), and properties that can exist or not regardless of the presence of biology (abiogenic). These four categories are critical in understanding and deciphering future returned samples from Mars, signs of potential extinct/ancient and extant life on Mars, and in situ analyses from ocean worlds to distinguish and separate what physical structures and chemical patterns are due to life and which are not. Moreover, we discuss hypothetical detection and preservation environments for extant and extinct life, respectively. These proposed environments will take into account independent active and ancient in situ detection prospects by using previous planetary exploration studies and discuss the geobiological implications within an astrobiological context.


Assuntos
Meio Ambiente Extraterreno , Marte , Planeta Terra , Exobiologia , Geologia , Planetas
4.
J Phys Chem B ; 124(50): 11491-11500, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33284009

RESUMO

Dielectric spectroscopy (DS) can be a robust in situ technique for geochemical applications. In this study, we applied deep-learning techniques to DS measurement data to enable rapid science interrogation and identification of electrolyte solutions containing salts and amino acids over a wide temperature range (20 to -60 °C). For the purpose of searching for signs of life, detecting amino acids is a fundamental high priority for field and planetary instruments as amino acids are one of the building blocks for life as we know it. A convolutional neural network (CNN) with channel-wise one-dimensional filters is proposed to fulfill the task, using the DS data of amino acid and inorganic salt solutions. Experimental results show that the CNN with two convolutional layers and one fully connected layer can effectively differentiate solutions containing amino acids from those containing salts in both the liquid and solid (water ice) states. To complement the experimental measurements and CNN analysis, the diffusive behaviors of ions (K+, Cl-, and OH-) were further discussed with atomistic molecular dynamics simulations performed in this work as well as the quantum simulation published in the literature. Combining DS with machine-learning techniques and simulations will greatly facilitate more real-time decision-making of mobility systems for future exploratory endeavors in other worlds beyond Earth.

5.
Chem Erde ; 80(2)2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33299255

RESUMO

NASA's search for habitable environments has focused on alteration mineralogy of the Martian crust and the formation of hydrous minerals, because they reveal information about the fluid and environmental conditions from which they precipitated. Extensive work has focused on the formation of alteration minerals at low temperatures, with limited work investigating metamorphic or high-temperature alteration. We have investigated such a site as an analog for Mars: a mafic dike on the Colorado Plateau that was hydrothermally altered from contact with groundwater as it was emplaced in the porous and permeable Jurassic Entrada sandstone. Our results show evidence for fluid mobility removing Si and K but adding S, Fe, Ca, and possibly Mg to the system as alteration progresses. Mineralogically, all samples contain calcite, hematite, and kaolinite; with most samples containing minor anatase, barite, halite, and dolomite. The number of alteration minerals increase with alteration. The hydrothermal system that formed during interaction of the magma (heat source) and groundwater would have been a habitable environment once the system cooled below ~120° C. The mineral assemblage is similar to alteration minerals seen within the Martian crust from orbit, including those at Gusev and Jezero Craters. Therefore, based on our findings, and extrapolating them to the Martian crust, these sites may represent habitable environments which would call for further exploration and sample return of such hydrothermally altered igneous materials.

6.
Astrobiology ; 20(12): 1405-1412, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32924535

RESUMO

Hydrothermal vents, which are highly plausible habitable environments for life and of interest for some origin-of-life scenarios, may exist on icy moons such as Europa or Enceladus in addition to Earth. Some hydrothermal vent chimney structures are extremely porous and friable, making their reconstruction in the lab challenging (e.g., brucite or saponite in alkaline hydrothermal settings). Here, we present the results from our efforts to reconstruct a simplified chimney structure directly out of mineral powder using binder jet additive manufacturing. Olivine sand was chosen for this initial method development effort since it represents a naturally occurring seafloor material and is inexpensively available in large quantities in powder form. The crystal structure of olivine used for the print was not modified during the process, as confirmed by powder X-ray diffraction (XRD). To characterize the microstructure of our 3D printed precipitates, we used computed tomography (CT) X-ray scan techniques. We also evaluated a chimney precipitate from a sample collected from the Prony Hydrothermal Field (PHF), southern New Caledonia, an alkaline system driven by serpentinization with mineralogy composed of brucite and carbonates. While not directly comparable from a mineralogical point of view, the microstructure and porosity of both precipitates was similar, suggesting that our 3D printing technique may be a valuable tool for future astrobiology research on hydrothermal vent precipitates.


Assuntos
Fontes Hidrotermais , Minerais/análise , Planeta Terra , Exobiologia , Fontes Hidrotermais/química , Impressão Tridimensional
7.
Astrobiology ; 20(10): 1251-1261, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32551936

RESUMO

It is now routinely possible to sequence and recover microbial genomes from environmental samples. To the degree it is feasible to assign transcriptional and translational functions to these genomes, it should be possible, in principle, to largely understand the complete molecular inputs and outputs of a microbial community. However, gene-based tools alone are presently insufficient to describe the full suite of chemical reactions and small molecules that compose a living cell. Metabolomic tools have developed quickly and now enable rapid detection and identification of small molecules within biological and environmental samples. The convergence of these technologies will soon facilitate the detection of novel enzymatic activities, novel organisms, and potentially extraterrestrial life-forms on solar system bodies. This review explores the methodological problems and scientific opportunities facing researchers who hope to apply metabolomic methods in astrobiology-related fields, and how present challenges might be overcome.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Metabolômica , Biomarcadores
8.
Langmuir ; 36(21): 5793-5801, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32421344

RESUMO

Understanding the structure and behavior of chemical gardens is of interest for materials science, for understanding organic-mineral interactions, and for simulating geological mineral structures in hydrothermal systems on Earth and other worlds. Herein, we explored the effects of amino acids on inorganic chemical garden precipitate systems of iron chloride and sodium silicate to determine if/how the addition of organics can affect self-assembling morphologies or crystal growth. Amino acids affect chemical garden growth and morphology at the macro-scale and at the nanoscale. In this reaction system, the concentration of amino acid had a greater impact than the amino acid side chain, and increasing concentrations of organics caused structures to have smoother exteriors as amino acids accumulated on the outside surface. These results provide an example of how organic compounds can become incorporated into and influence the growth of inorganic self-organizing precipitates in far-from-equilibrium systems. Additionally, sample handing methods were developed to successfully image these delicate structures.

9.
Astrobiology ; 20(7): 864-877, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32286848

RESUMO

Polygonal features in a ∼250 million-year-old Permian evaporitic deposit were investigated for their geological and organic content to test the hypothesis that they could preserve the signature of ancient habitable conditions and biological activity. Investigations on evaporitic rock were carried out as part of the MIne Analog Research (MINAR) project at Boulby Mine, the United Kingdom. The edges of the polygons have a higher clay content and contain higher abundances of minerals such as quartz and microcline, and clays such as illite and chlorite, compared with the interior of polygons, suggesting that the edges were preferred locations for the accumulation of weathering products during their formation. The mineral content and its strontium isotope ratio suggest that the material is from continental weathering at the borders of the Permian Zechstein Sea. The edges of the polygons contain material with mean δ13C and δ15N values of -20.8 and 5.3, respectively. Lipids, including alkanes and hopanes, were extracted from the interior and edges of the polygons, which are inferred to represent organic material entrained in the evaporites when they were formed. The presence of long-chain alkanes (C20-C35) that lack a carbon preference, low abundances of C23-C29 hopanes, and lack of marine, evaporitic, or thermal maturity indicators show that lipid biomarkers were, at least in part, potentially derived from a continental source and have not undergone significant thermal maturation since deposition. Lipid extractions using weak acids revealed significantly more lipids than those without acid, potentially indicating that encapsulation was not the only type of preservation mechanism occurring in Boulby salts. These data demonstrate the potential for ancient evaporites and their polygons to preserve information on local geological conditions, ancient habitability, and evidence of life. The data show that analogous martian evaporitic deposits are good targets for future life detection missions and the investigation of ancient martian habitability.


Assuntos
Exobiologia/métodos , Meio Ambiente Extraterreno/química , Sedimentos Geológicos/análise , Lipídeos/análise , Marte , Compostos de Alumínio/análise , Compostos de Alumínio/química , Biomarcadores/análise , Biomarcadores/química , Cloretos/análise , Cloretos/química , Sedimentos Geológicos/química , Lipídeos/química , Minerais/análise , Minerais/química , Quartzo/análise , Quartzo/química , Silicatos/análise , Silicatos/química , Reino Unido , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA