Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1225424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600183

RESUMO

Somatic embryogenesis is an efficient mean for rapid micropropagation and preservation of the germplasm of valuable coniferous trees. Little is known about how the composition of secretome tracks down the level of embryogenic capacity. Unlike embryogenic tissue on solid medium, suspension cell cultures enable the study of extracellular proteins secreted into a liquid cultivation medium, avoiding contamination from destructured cells. Here, we present proteomic data of the secretome of Pinus nigra cell lines with contrasting embryogenic capacity, accounting for variability between genotypes. Our results showed that cell wall-related and carbohydrate-acting proteins were the most differentially accumulated. Peroxidases, extensin, α-amylase, plant basic secretory family protein (BSP), and basic secretory protease (S) were more abundant in the medium from the lines with high embryogenic capacity. In contrast, the medium from the low embryogenic capacity cell lines contained a higher amount of polygalacturonases, hothead protein, and expansin, which are generally associated with cell wall loosening or softening. These results corroborated the microscopic findings in cell lines with low embryogenic capacity-long suspensor cells without proper assembly. Furthermore, proteomic data were subsequently validated by peroxidase and α-amylase activity assays, and hence, we conclude that both tested enzyme activities can be considered potential markers of high embryogenic capacity.

2.
J Plant Physiol ; 251: 153219, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32563765

RESUMO

Ionizing radiation is a genotoxic anthropogenic stressor. It can cause heritable changes in the plant genome, which can be either adaptive or detrimental. There is still considerable uncertainty about the effects of chronic low-intensity doses since earlier studies reported somewhat contradictory conclusions. Our project focused on the recovery from the multiyear chronic ionizing radiation stress. Soybean (Glycine max) was grown in field plots located at the Chernobyl exclusion zone and transferred to the clean ground in the subsequent generation. We profiled proteome of mature seeds by two-dimensional gel electrophoresis. Overall, 15 differentially abundant protein spots were identified in the field comparison and 11 in the recovery generation, primarily belonging to storage proteins, disease/defense, and metabolism categories. Data suggested that during multigenerational growth in a contaminated environment, detrimental heritable changes were accumulated. Chlorophyll fluorescence parameters were measured on the late vegetative state, pointing to partial recovery of photosynthesis from stress imposed by contaminating radionuclides. A plausible explanation for the observed phenomena is insufficient provisioning of seeds by lower quality resources, causing a persistent effect in the offspring generation. Additionally, we hypothesized that immunity against phytopathogens was compromised in the contaminated field, but perhaps even primed in the clean ground, yet this idea requires direct functional validation in future experiments. Despite showing clear signs of physiological recovery, one season was not enough to normalize biochemical processes. Overall, our data contribute to the more informed agricultural radioprotection.


Assuntos
Acidente Nuclear de Chernobyl , Glycine max/efeitos da radiação , Proteínas de Plantas/metabolismo , Proteoma/efeitos da radiação , Radiação Ionizante , Estresse Fisiológico , Eletroforese em Gel Bidimensional , Glycine max/crescimento & desenvolvimento , Glycine max/fisiologia , Ucrânia
3.
Ecotoxicol Environ Saf ; 173: 86-95, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30769207

RESUMO

Large areas polluted with toxic heavy metals or radionuclides were formed as a side product of rapid industrial development of human society. Plants, due to their sessile nature, should adapt to these challenging genotoxic environmental conditions and develop resistance. Herein, we evaluated the response of three natural ecotypes of Arabidopsis thaliana (L.) Heynh (Oasis, Columbia-0, and Chernobyl-07) to cadmium, using discovery gel-based proteomics. These accessions are differing by level of tolerance to heavy metal probably achieved by various exposure to chronic ionizing radiation. Based on the pairwise comparison (control versus cadmium-treated) we recognized 5.8-13.4% of identified proteins as significantly altered at the presence of cadmium. Although the majority of photosynthesis-related proteins were found to be less abundant in all ecotypes it was noted that in contrast to the sensitive variants (Col and Oas), the tolerant Che accession may activate the mechanism preserving photosynthesis and energy production. Also, proteins modulating energy budget through alternative route and mediating higher resistance to heavy metals were upregulated in this ecotype. Although we suggest that regulation of enzymes acting in peptide and protein synthesis, protection of the plants against various abiotic stresses, or those neutralizing the effects of reactive oxygen species are rather associated with general response to cadmium, they were found to be altered more intensively in the Che accession. Thus, the identified affected proteins may represent good candidate molecules for molecular breeding to improve tolerance of crops to heavy metal stress.


Assuntos
Arabidopsis/fisiologia , Cádmio/metabolismo , Ecótipo , Poluentes Ambientais/metabolismo , Estresse Fisiológico , Adaptação Fisiológica/efeitos da radiação , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Proteômica , Exposição à Radiação , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA