Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(22): 15627-15636, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38746838

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are pervasive in industrial processes, eliciting public concern upon their release into municipal sewers or the environment. Removing PFAS from the environment has become an urgent need. However, because potential endpoints span from energy-intensive complete mineralization to partial PFAS transformation, understanding and developing metrics for evaluating PFAS treatment can be a challenge. The goal of this study was to evaluate and compare the effectiveness of electrocatalytic degradation of PFAS with boron-doped diamond (BDD) electrodes using four techniques: LC-MS/MS target analysis, fluoride ion (F-), adsorbable organofluorine (AOF), and bioaccumulation potential using lipid-bilayer partition (LBP) tests. After 3 hours of electrocatalysis, >99% perfluorooctanoic acid (PFOA) degradation was achieved and corresponded with 84% conversion to F-, which was substantial - though intentionally not complete - defluorination. For the same 3 hour treatment time, AOF and LBP coefficient were reduced by 95% and 83%, respectively. LBP's detection limit was 2 orders of magnitude higher than that of AOF, so the positive correlation observed between LBP and AOF (r = 0.86) suggests AOF's practical utility as a design metric for assessing bioaccumulation potential of various organofluorine transformation by-products.

2.
Water Res ; 255: 121528, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555781

RESUMO

Electro-regeneration is emerging as a new technique to regenerate spent carbon adsorbents through an electrochemical process. In this study, sequential adsorption and electro-regeneration of ciprofloxacin (CIP)-laden carbon were investigated using both pristine and iron (Fe)-doped F400 activated carbon in distilled, deionized (DI) water and reverse osmosis (RO) concentrate water. The impact of reactor flow rate and sequential adsorption/electro-regeneration cycles on the regeneration efficiency were also evaluated. The results indicate that the breakthrough points for both adsorbents in DI water, where 100 % of the CIP molecules were adsorbed, occurred at around 7,800 bed volumes (BVs). Conversely, electro-regeneration for both adsorbents, where 94 % of the CIP molecules were desorbed, took place at 380 BVs. The main distinction between the two activated carbons lies in the initial range of BVs (<400 BVs).Fe doping on F400 appears to enhance its surface selectivity for CIP uptake, which can easily diffuse into the meso/macropore regions of Fe-doped F400. In contrast, pristine F400, being highly microporous, necessitated more contact time to fill its high-energy sites, resulting in a higher affinity for CIP adsorption. Over the four sequential adsorption/electro-regeneration cycles in DI water, a similar regeneration efficiency was observed at 190 BVs. As the flow rate increased from 2 to 6 mL/min, the CIP uptake on pristine F400 decreased in DI water, calculating 138, 74 and 57 mg/g for flow rates of 2, 4, and 6 mL/min, respectively. When the RO concentrate water was compared with DI water, the pristine F400 quickly reached saturation due to pore blockage caused by organic matter in RO concentrate. During electro-regeneration, up to 100 % of adsorbed CIP molecules were desorbed at around 120 BVs in RO concentrate, which is 3X faster than DI water. The effectiveness of this technology can be enhanced by implementing continuous flow systems, thereby improving the overall efficiency of CIP removal in RO concentrate.

3.
ACS Biomater Sci Eng ; 10(4): 2351-2366, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38323834

RESUMO

Electrically conductive biomaterials and nanomaterials have demonstrated great potential in the development of functional and mature cardiac tissues. In particular, gold nanomaterials have emerged as promising candidates due to their biocompatibility and ease of fabrication for cardiac tissue engineering utilizing rat- or stem cell-derived cardiomyocytes (CMs). However, despite significant advancements, it is still not clear whether the enhancement in cardiac tissue function is primarily due to the electroconductivity features of gold nanoparticles or the structural changes of the scaffold resulting from the addition of these nanoparticles. To address this question, we developed nanoengineered hydrogel scaffolds comprising gelatin methacrylate (GelMA) embedded with either electrically conductive gold nanorods (GNRs) or nonconductive silica nanoparticles (SNPs). This enabled us to simultaneously assess the roles of electrically conductive and nonconductive nanomaterials in the functionality and fate of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Our studies revealed that both GNR- and SNP-incorporated hydrogel scaffolds exhibited excellent biocompatibility and similar cardiac cell attachment. Although the expression of sarcomere alpha-actinin did not significantly differ among the conditions, a more organized sarcomere structure was observed within the GNR-embedded hydrogels compared to the nonconductive nanoengineered scaffolds. Furthermore, electrical coupling was notably improved in GNR-embedded scaffolds, as evidenced by the synchronous calcium flux and enhanced calcium transient intensity. While we did not observe a significant difference in the gene expression profile of human cardiac tissues formed on the conductive GNR- and nonconductive SNP-incorporated hydrogels, we noticed marginal improvements in the expression of some calcium and structural genes in the nanomaterial-embedded hydrogel groups as compared to the control condition. Given that the cardiac tissues formed atop the nonconductive SNP-based scaffolds (used as the control for conductivity) also displayed similar levels of gene expression as compared to the conductive hydrogels, it suggests that the electrical conductivity of nanomaterials (i.e., GNRs) may not be the sole factor influencing the function and fate of hiPSC-derived cardiac tissues when cells are cultured atop the scaffolds. Overall, our findings provide additional insights into the role of electrically conductive gold nanoparticles in regulating the functionalities of hiPSC-CMs.


Assuntos
Nanopartículas Metálicas , Engenharia Tecidual , Humanos , Ratos , Animais , Engenharia Tecidual/métodos , Ouro , Dióxido de Silício , Hidrogéis/química , Cálcio/metabolismo , Células-Tronco
4.
Water Res X ; 22: 100211, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38298331

RESUMO

Among the various substances found in the feed source for the production of ultrapure water (UPW), urea is challenging to remove because it is a small molecular weight molecule that is not easily oxidized and does not carry a charge under neutral pH conditions. Urease enzyme, found in various organisms such as plants and bacteria, catalyze the hydrolysis of urea into carbon dioxide and ammonia. In this study, urease was immobilized on the polyamide layer of a reverse osmosis (RO) membrane to remove urea in UPW systems. The removal efficiency of urea by urease-coated RO membrane showed up to 27.9 % higher urea removal efficiency compared to the pristine membrane. This increase in urea removal can be attributed to both physical and biological effects from the urease coating on the membrane. Firstly, urease on the membrane surface can act as an additional physical barrier for urea to pass through. Secondly, urea can be hydrolyzed by the enzyme when it passes through the urease-coated RO membrane. In a two-pass RO system typical for UPW production, the removal of urea by a urease-coated membrane would be enhanced by twofold. This overall method can significantly increase the removal efficiency of urea in UPW systems, especially when considering the compounded removal by the urease coating, rejection by RO, and additional reactions by other treatment processes. Moreover, urea in UPW systems can be removed without the installment of additional processes by simply coating urease on the existing RO membranes.

5.
J Environ Manage ; 348: 119298, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839202

RESUMO

Pharmaceuticals excreted after administration can pollute water sources given their ineffective removal in conventional wastewater treatment plant. Among the techniques used during tertiary wastewater treatment, adsorption is an effective and cost-efficient method for removing antibiotics. This study aimed to investigate the adsorption of ciprofloxacin (CIP) on metal-doped granular activated carbon (GAC) and evaluate the impact of urine on CIP adsorption for pristine, pre-oxidized, and metal-doped GAC. The results showed that the uptake of CIP by iron (Fe)-doped GAC was higher than Ag-doped, pre-oxidized, and pristine GAC in single-solute isotherms (DI water). This higher uptake was attributed to the presence of Fe content (1.2%) on the carbon surface, which can strongly interact with zwitterionic CIP at a neutral pH. However, when synthetic human urine was introduced, the adsorption of CIP was negatively affected due to pore blockage and competition for available sorption sites on the GAC. Among the four types of GACs tested, the lowest reduction in CIP uptake in the urine solution was observed for Fe-doped GAC followed (%17) by pre-oxidized (64%), Ag-doped (%69), and pristine F400 (76%) carbon. These results suggested that the complexation between CIP and Fe-doped GAC in urine was stronger due to its higher functionalization compared to Ag-doped, pre-oxidized, and pristine GAC. As the equilibrium concentration of CIP increased, the competition between CIP and urine decreased on the surface of Fe-doped carbon, owing to the limited competition from urine for the available active sorption sites.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Ciprofloxacina/química , Adsorção , Metais/química , Antibacterianos/química , Água , Carvão Vegetal/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
6.
Environ Sci Technol ; 57(41): 15736-15746, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37802050

RESUMO

Biofilms give rise to a range of issues, spanning from harboring pathogens to accelerating microbial-induced corrosion in pressurized water systems. Introducing germicidal UV-C (200-280 nm) irradiation from light-emitting diodes (LEDs) into flexible side-emitting optical fibers (SEOFs) presents a novel light delivery method to inhibit the accumulation of biofilms on surfaces found in small-diameter tubing or other intricate geometries. This work used surfaces fully submerged in flowing water that contained Pseudomonas aeruginosa, an opportunistic pathogen commonly found in water system biofilms. A SEOF delivered a UV-C gradient to the surface for biofilm inhibition. Biofilm growth over time was monitored in situ using optical conference tomography. Biofilm formation was effectively inhibited when the 275 nm UV-C irradiance was ≥8 µW/cm2. Biofilm samples were collected from several regions on the surface, representing low and high UV-C irradiance. RNA sequencing of these samples revealed that high UV-C irradiance inhibited the expression of functional genes related to energy metabolism, DNA repair, quorum sensing, polysaccharide production, and mobility. However, insufficient sublethal UV-C exposure led to upregulation genes for SOS response and quorum sensing as survival strategies against the UV-C stress. These results underscore the need to maintain minimum UV-C exposure on surfaces to effectively inhibit biofilm formation in water systems.


Assuntos
Incrustação Biológica , Pseudomonas aeruginosa/fisiologia , Fibras Ópticas , Desinfecção/métodos , Biofilmes/efeitos da radiação , Água , Percepção de Quorum
7.
Aquat Toxicol ; 263: 106703, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37748231

RESUMO

The potential ecotoxicological hazard of gaphene oxide (GO) is not fully clarified for photoautotrophic organisms, especially when the interactions of GO with other environmental toxicants are considered. The objective of the current study was to better understand the mechanisms of toxicity of GO in the cyanobacteria Microcystis aeruginosa, and to identify its interactions with cadmium (Cd). The individual and combined contribution of both pollutants in cyanobacteria were evaluated after 96 hours of exposure to GO and/or Cd, using photosynthetic pigments, photosynthetic parameters, cellular indicators of peroxidative damage, viability, and intracellular ROS formation as indicators of toxicity. Interactions between GO and Cd were evaluated using Toxic Units based on the EC50 of each parameter evaluated. The results of this study indicate that single concentrations ≥ 5 µg mL-1 of GO and ≥ 0.1 µg mL-1 of Cd induced a decrease in cell biomass and a change in the photosynthetic parameters associated with primary productivity in M. aeruginosa. In the combined experiments, higher GO ratios (≥ 9.1 µg mL-1) in terms of Toxic Units decreased photochemical processes and cellular metabolism, increased oxidative stress, and ultimately affected the size of M. aeruginosa. Finally, the relationship between GO concentration, Cd concentration, and the adsorption capacity of GO with respect to the co-pollutant must be taken into account when assessing the environmental risk of GO in aquatic environments.


Assuntos
Cianobactérias , Microcystis , Poluentes Químicos da Água , Microcystis/metabolismo , Cádmio/metabolismo , Poluentes Químicos da Água/toxicidade , Fotossíntese , Estresse Oxidativo , Cianobactérias/metabolismo , Óxidos/metabolismo
8.
BMC Med Educ ; 23(1): 581, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592282

RESUMO

BACKGROUND: Headache disorders are the most common neurological disorders worldwide. Despite their widespread prevalence and importance, the topic of headache is inconsistently taught at both the undergraduate and postgraduate levels. The goal of this study is to establish a better picture of the current state of Headache Medicine (HM) training in Neurology postgraduate programs in Canada and describe the impact of the current pandemic on training in this domain. METHODS: Online surveys were sent to senior residents of adult Neurology programs in Canada. We also conducted telephone interviews with Neurology Program Directors. Descriptive statistics were analyzed, and thematic analysis was used to review free text. RESULTS: A total of 36 residents, and 3 Program Directors participated in the study. Most of the teaching in HM is done by headache specialists and general neurology faculty. Formal teaching is mainly given during academic half day. Most of the programs expose their residents to Onabotulinum toxin A injections and peripheral nerve blocks, but they don't offer much formal teaching regarding these procedures. Residents consider HM teaching important and they would like to have more. They don't feel comfortable performing interventional headache treatments, despite feeling this should be part of the skillset of a general neurologist. CONCLUSION: Our study is the first to establish the current state of headache teaching in post-graduate neurology programs as perceived by trainees and program directors in Canada. The current educational offerings leave residents feeling poorly prepared to manage headaches, including procedural interventions. There is a need to diversify the source of teaching, so the educational burden doesn't lie mostly upon Headache specialists who are already in short supply. Neurology Residency programs need to adapt their curriculum to face the current need in HM.


Assuntos
Internato e Residência , Neurologia , Adulto , Humanos , Canadá , Escolaridade , Cefaleia/terapia
9.
Chemosphere ; 330: 138711, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37076084

RESUMO

Bromide forms toxic brominated disinfection by-products during disinfection. Current bromide removal technologies are often non-specific and costly due to naturally occurring competing anions. A silver-impregnated graphene oxide (GO) nanocomposite is reported here that reduced the amount of Ag needed for Br- removal by increasing its selectivity towards Br-. GO was impregnated with ionic (GO-Ag+) or nanoparticulate Ag (GO-nAg) and compared against Ag+ or unsupported nAg to identify molecular level interactions. In nanopure water, Ag+ and nAg had the highest Br- removal (∼0.89 mol Br-/mol Ag+) followed by GO-nAg at 0.77 mol Br-/mol Ag+. However, under anionic competition, the Ag+ removal was reduced to 0.10 mol Br-/mol Ag+ while all nAg forms retained good Br- removal. To understand the removal mechanism, anoxic experiments were performed to prevent nAg dissolution, which resulted in higher Br- removal for all nAg forms compared to oxic conditions. This suggests that reaction of Br- with the nAg surface is more selective than with Ag+. Finally, jar tests showed that anchoring nAg on GO enhances Ag removal during coagulation/flocculation/sedimentation compared to unsupported nAg or Ag+. Thus, our results identify strategies that can be used to design selective and silver-efficient adsorbents for Br- removal in water treatment.


Assuntos
Grafite , Nanopartículas Metálicas , Nanocompostos , Poluentes Químicos da Água , Brometos , Prata , Poluentes Químicos da Água/análise
10.
Sci Total Environ ; 860: 160524, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36574542

RESUMO

Microplastics (MPs) could act as vectors of organic pollutants such as per- and polyfluoroalkyl substances (PFAS). Therefore, understanding adsorptive interactions are essential steps towards unraveling the fate of PFAS in the natural waters where MPs are ubiquitous. Linear solvation energy relationships (LSER)-based predictive models are utilitarian tools to delineate the complexity of adsorption interactions. However, commonly studied PFAS are in their ionic forms at environmentally relevant conditions and LSER modeling parameters do not account for their ionization. This study aims to develop the first LSER model for the adsorption of PFAS by MPs using a subset of ionizable perfluoroalkyl carboxylic acids (PFCA). The adsorption of twelve PFCAs by polystyrene (PS) MPs was used for model training. The study provided mechanistic insights regarding the impacts of PFCA chain length, PS oxidation state, and water chemistry. Results show that the polarizability and hydrophobicity of anionic PFCA are the most significant contributors to their adsorption by MPs. In contrast, van der Waals interactions between PFCA and water significantly decrease PFCA binding affinity. Overall, LSER is demonstrated as a promising approach for predicting the adsorption of ionizable PFAS by MPs after the correction of Abraham's solute descriptors to account for their ionization.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Microplásticos , Plásticos , Adsorção , Poliestirenos , Ácidos Carboxílicos , Água
11.
Environ Sci (Camb) ; 9(2): 363-374, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260005

RESUMO

Microplastics in the aquatic system are among the many inevitable consequences of plastic pollution, which has cascading environmental and public health impacts. Our study aimed at analyzing surface interactions and leachate production of six microplastics under ultraviolet (UV) irradiation. Leachate production was analyzed for the dissolved organic content (DOC), UV254, and fluorescence through excitation emission (EEM) to determine the kinetics and mechanisms involved in the release of organic matter by UV irradiation. The results suggested there was a clear trend of organic matter being released from the surface of the six microplastics caused by UV irradiation based on DOC, UV254 absorbance, and EEM intensity increasing with time. Polystyrene had the greatest and fastest increase in DOC concentrations, followed by the resin coated polystyrene. Experiments conducted at different temperatures indicated the endothermic nature of these leaching mechanisms. The differences in leachate formation for different polymers were attributed to their chemical makeup and their potency to interact with UV. The aged microplastic samples were analyzed by Fourier-transform infrared spectroscopy (FT-IR), Raman, and X-ray photoelectron spectroscopy (XPS), to determine the surface changes with respect to leachate formation. Results indicated that all microplastics had increasing carbonyl indices when aged by UV with polystyrene being the greatest. These findings affirm that the leachate formation is an interfacial interaction and could be a significant source of organic compound influx to natural waters due to the extremely abundant occurrence of microplastics and their large surface areas.

12.
Water Res ; 224: 119094, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115159

RESUMO

Biofouling of membrane surfaces poses significant operational challenges and costs for desalination and wastewater reuse applications. Ultraviolet (UV) light can control biofilms while reducing chemical usage and disinfection by-products, but light deliveries to membrane surfaces in spiral wound geometries has been a daunting challenge. Thin and flexible nano-enabled side-emitting optical fibers (SEOFs) are novel light delivery devices that enable disinfection or photocatalytic oxidation by radiating UV light from light-emitting diodes (LEDs). We envision SEOFs as an active membrane spacer to mitigate biofilm formation on reverse osmosis (RO) membranes. A lab-scale RO membrane apparatus equipped with SEOFs allowed comparison of UV-A (photocatalysis-enabled) versus UV-C (direct photolysis disinfection). Compared against systems without any light exposure, systems with UV-C light formed thinner-but denser-biofilms, prevented permeate flux declines due to biofouling, and maintained the highest salt rejection. Results were corroborated by in-situ optical coherence tomography and ex-situ measurements of biofilm growth on the membranes. Transcriptomic analysis showed that UV-C SEOFs down-regulated quorum sensing and surface attachment genes. In contrast, UV-A SEOFs upregulated quorum sensing, surface attachment, and oxidative stress genes, resulting in higher extracellular polymeric substances (EPS) accumulation on membrane surfaces. Overall, SEOFs that deliver a low fluence of UV-C light onto membrane surfaces are a promising non-chemical approach for mitigating biofouling formation on RO membranes.


Assuntos
Incrustação Biológica , Purificação da Água , Biofilmes , Incrustação Biológica/prevenção & controle , Membranas Artificiais , Fibras Ópticas , Osmose , Raios Ultravioleta , Águas Residuárias , Purificação da Água/métodos
13.
Colloids Surf B Biointerfaces ; 216: 112562, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35594751

RESUMO

This study focuses on the in-situ nucleation of silver nanoparticles (AgNPs) on stainless steel (SS) to provide a localized antibacterial action for biofouling control during space missions. Since AgNPs rapidly dissolve in water, partial passivation of AgNPs was provided to slow down silver release and extend the lifetime of the antibacterial coating. Two different passivation approaches, based on the formation of low solubility silver sulfide (Ag2S) or silver bromide (AgBr) shells, were compared to identify the optimal passivation for biofouling control. Highest bacterial inactivation (up to 75%) occurred with sulfidized AgNPs as opposed to bromidized (up to 50%) NPs. The optimal passivation treatment for biofouling control was found at 10-5 M Na2S (for Ag2S) and 10-3 M NaBr (for AgBr) concentrations. Scanning Electron Microscopy (SEM) analyses confirmed the presence of AgNPs on AgBr and Ag2S-coated samples. Further investigation revealed that compared to pristine AgNPs, Ag release from both sulfidized and bromidized NPs was significantly lower (16% vs 6% or less). Overall, both sulfidized and bromidized AgNPs were effective at controlling biofilm formation; however, sulfidized NPs exhibited the maximum antibacterial activity, making it the preferable passivation strategy for AgNPs on SS surfaces.


Assuntos
Incrustação Biológica , Nanopartículas Metálicas , Antibacterianos/farmacologia , Incrustação Biológica/prevenção & controle , Prata/farmacologia , Aço Inoxidável
14.
Chemosphere ; 298: 134238, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35276106

RESUMO

When released in the environment, microplastics undergo surface weathering due to mechanical abrasion and ultraviolet exposure. In this study, the adsorption of two model contaminants, phenanthrene and methylene blue, by weathered high density polyethylene (HDPE) and polypropylene (PPE) was evaluated to understand how the microplastics' aging influences contaminant adsorption. Microplastics were aged through an accelerated weathering process using ultraviolet exposure with or without hydrogen peroxide. Adsorption isotherms were conducted for both contaminants on pristine and aged microplastics. The adsorption of organic contaminants was higher on aged microplastics than on pristine ones, with methylene blue having the highest affinity increase with aging at 4.7-fold and phenanthrene having a 1.9-fold increase compared to the pristine particles. To understand the mechanisms involved with higher adsorption of contaminants by aged microplastics, changes in the specific surface area and surface chemistry of aged microplastics were characterized by Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy, zeta potential, X-ray tomography, and Brunauer-Emmett-Teller krypton adsorption analyses. The results of this study show that oxidation of microplastics can enhance the adsorption of organic contaminants, which may increase their role as vectors of contaminants in the aquatic food chain.


Assuntos
Fenantrenos , Poluentes Químicos da Água , Adsorção , Azul de Metileno , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
15.
J Colloid Interface Sci ; 603: 391-397, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34197987

RESUMO

Biofouling is a major obstacle in engineered systems exposed to aqueous conditions. Many attempts have been made to engineer the surface properties of materials to render them resistant to biofouling. These modifications typically rely on passive antimicrobial or anti-adhesive surface coatings that prevent the deposition of bacteria or inactivate them once they reach the surface. However, no surface modification strategy completely prevents biofilm formation, and, over time, surfaces will be fouled and require cleaning. In this work, we demonstrate the capacity of electrochemical carbon nanotube coatings in dispersing biofilms formed on the surface. A systematic analysis of the biofilm removal kinetics in function of applied current density is made to identify the optimal current conditions needed for efficient surface cleaning. Operating the electrochemically active surface as a cathode produces superior results compared to when it is operated as an anode. Specifically, the 5.00 A m-2 and 2.50 A m-2 cathodic conditions produced rapid cleaning, with complete biofilm dispersal after 2 min of operation. Surface cleaning is attributed to the generation of microbubbles on the surface that scours the surface to remove the adhered biofilm. Energy consumption analyses indicate that the 2.50 A m-2 cathodic condition offers the best combination of cleaning kinetics and energy consumption achieving 99% biofilm removal at an energy cost of ~$ 0.0318 m-2. This approach can be competitive compared to the current chemical cleaning strategies, while offering an opportunity for a more sustainable and integrated approach for biofouling management in engineered systems.


Assuntos
Incrustação Biológica , Nanotubos de Carbono , Biofilmes , Incrustação Biológica/prevenção & controle , Eletrodos , Cinética
16.
Environ Sci Technol ; 55(10): 6984-6994, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33949853

RESUMO

A new optimized ultraviolet (UV) technique induced a photooxidation surface modification on thin-film composite (TFC) polyamide (PA) brackish water reverse osmosis (BWRO) membranes that improved membrane performance (i.e., permeability and organic fouling propensity). Commercial PA membranes were irradiated with UV-B light (285 nm), and the changes in the membrane performance were assessed through dead-end and cross-flow tests. UV-B irradiation at 12 J·cm-2 enhanced the pure water permeability by 34% in the dead-end tests without decreasing the mono- or divalent ion rejections, as compared with the pristine PA membrane, and led to less fouling by natural organic matter in the cross-flow tests. Scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS) confirmed that UV-B irradiation opened the pore structure and created carboxylic and amine groups on the PA surface, leading to increased membrane surface charge and hydrophilicity. Thus, an optimal UV-B dose appears to modify only a thin layer of the PA membrane surface, which favorably enhances the membrane performance. UV-B did not alter the structure, flux, or salt rejection for cellulose triacetate (CTA)-based membranes. While other membrane surface modifications include oxidants, strong acids, and bases, the UV-B facile treatment is chemical-free, thus reducing chemical wastes, and easy to apply in roll-to-roll fabrication processes of PA membranes. The results also showed that a low UV irradiation dose could be applied to PA or CTA membranes for disinfection or photocatalytic oxidation.


Assuntos
Membranas Artificiais , Nylons , Filtração , Osmose , Permeabilidade
17.
NPJ Biofilms Microbiomes ; 7(1): 26, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731698

RESUMO

The bacteriophage infection cycle has been extensively studied, yet little is known about the nanostructure and mechanical changes that lead to bacterial lysis. Here, atomic force microscopy was used to study in real time and in situ the impact of the canonical phage T4 on the nanotopography and biomechanics of irreversibly attached, biofilm-forming E. coli cells. The results show that in contrast to the lytic cycle in planktonic cells, which ends explosively, anchored cells that are in the process of forming a biofilm undergo a more gradual lysis, developing distinct nanoscale lesions (~300 nm in diameter) within the cell envelope. Furthermore, it is shown that the envelope rigidity and cell elasticity decrease (>50% and >40%, respectively) following T4 infection, a process likely linked to changes in the nanostructure of infected cells. These insights show that the well-established lytic pathway of planktonic cells may be significantly different from that of biofilm-forming cells. Elucidating the lysis paradigm of these cells may advance biofilm removal and phage therapeutics.


Assuntos
Bacteriófago T4/patogenicidade , Biofilmes/crescimento & desenvolvimento , Escherichia coli/fisiologia , Aderência Bacteriana , Bacteriólise , Fenômenos Biomecânicos , Escherichia coli/ultraestrutura , Escherichia coli/virologia , Microscopia de Força Atômica
18.
Water Res ; 188: 116543, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137522

RESUMO

This review compiles recent advances and challenges in the photocatalytic treatment of natural water by analyzing the remediation of cyanotoxins. The review frames the treatment need based on the occurrence, geographical distribution, and legislation of cyanotoxins in drinking water while highlighting the underestimated global risk of cyanotoxins. Next, the fundamental principles of photocatalytic treatment for remediating cyanotoxins and the complex degradation pathway for the most widespread cyanotoxins are presented. The state-of-the-art and recent advances on photocatalytic treatment processes are critically discussed, especially the modification strategies involving TiO2 and the primary operational conditions that determine the scalability and integration of photocatalytic reactors. The relevance of light sources and light delivery strategies are shown, with emphasis on novel biomimicry materials design. Thereafter, the seldomly-addressed role of water-matrix components is thoroughly and critically explored by including natural organic matter and inorganic species to provide future directions in designing highly efficient strategies and scalable reactors.

19.
Chemosphere ; 265: 129137, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33288276

RESUMO

In photosynthetic microorganisms, the toxicity of carbon nanomaterials (CNMs) is typically characterized by a decrease in growth, viability, photosynthesis, as well as the induction of oxidative stress. However, it is currently unclear how the shape of the carbon structure in CNMs, such as in the 1-dimensional carbon nanotubes (CNTs) compared to the two-dimensional graphene oxide (GO), affects the way they interact with cells. In this study, the effects of GO and oxidized multi-walled CNTs were compared in the cyanobacterium Microcystis aeruginosa to determine the similarities or differences in how the two CNMs interact with and induce toxicity to cyanobacteria. Using change in Chlorophyll a concentrations, the effective concentrations inducing 50% inhibition (EC50) at 96 h are found to be 11.1 µg/mL and 7.38 µg/mL for GO and CNTs, respectively. The EC50 of the two CNMs were not found to be statistically different. Changes in fluorescein diacetate and 2',7'-dichlorodihydrofluorescein diacetate fluorescence, measured at the EC50 concentrations, suggest a decrease in esterase enzyme activity but no oxidative stress. Scanning and transmission electron microscopy imaging did not show extensive membrane damage in cells exposed to GO or CNTs. Altogether, the decrease in metabolic activity and photosynthetic activity without oxidative stress or membrane damage support the hypothesis that both GO and CNTs induced indirect toxicity through physical mechanisms associated with light shading and cell aggregation. This indirect toxicity explains why the intrinsic differences in shape, size, and surface properties between CNTs and GO did not result in differences in how they induce toxicity to cyanobacteria.


Assuntos
Grafite , Microcystis , Nanotubos de Carbono , Clorofila A , Grafite/toxicidade , Nanotubos de Carbono/toxicidade
20.
Sci Total Environ ; 737: 140044, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783828

RESUMO

Portable water purification devices are needed to provide safe drinking water in rural communities, developing communities with low quality centralized water distribution, and military or recreational applications. Filtration, ultraviolet light, or chemical additives provide a spectrum of alternatives to remove pathogens from water. For the first time, we design, fabricate and demonstrate the performance of a small portable photoelectric point-of-use device, and document its performance on pathogen inactivation. The device utilizes a commercial teacup from which TiO2 nanotube photoanodes were produced in-situ and, with a small rechargeable battery powered 365 nm light emitting diode, was able to achieve 5-log inactivation of Escherichia coli in 10 s and 2.6-log of Legionella in 60 s of treatment in model water samples. Treatment of natural water achieved a 1-log bacteria inactivation after 30 s due to matrix effects. The electro-photocatalytic disinfection reactor in a kup (e-DRINK) can provide a feasible and affordable solution to ensure access to clean water. More broadly, this work demonstrates the potential for illumination to improve the efficiency of electrocatalytic surfaces.


Assuntos
Proteínas de Escherichia coli , Purificação da Água , Desinfecção , Escherichia coli , Raios Ultravioleta , Água , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA