Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 241(1): 166-179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37565540

RESUMO

Early responses of plants to environmental stress factors prevent damage but can delay growth and development in fluctuating conditions. Optimising these trade-offs requires tunability of plant responsiveness to environmental signals. We have previously reported that Histone Deacetylase Complex 1 (HDC1), which interacts with multiple proteins in histone deacetylation complexes, regulates the stress responsiveness of Arabidopsis seedlings, but the underlying mechanism remained elusive. Here, we show that HDC1 attenuates transcriptome re-programming in salt-treated seedlings, and we identify two genes (LEA and MAF5) that inhibit seedling establishment under salt stress downstream of HDC1. HDC1 attenuates their transcriptional induction by salt via a dual mechanism involving H3K9/14 deacetylation and H3K27 trimethylation. The latter, but not the former, was also abolished in a triple knockout mutant of the linker histone H1, which partially mimics the hypersensitivity of the hdc1-1 mutant to salt stress. Although stress-induced H3K27me3 accumulation required both H1 and HDC1, it was not fully recovered by complementing hdc1-1 with a truncated, H1-binding competent HDC1 suggesting other players or independent inputs. The combined findings reveal a dual brake function of HDC1 via regulating both active and repressive epigenetic marks on stress-inducible genes. This natural 'anti-panic' device offers a molecular leaver to tune stress responsiveness in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Histonas/metabolismo , Plântula , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Trends Plant Sci ; 28(10): 1098-1100, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37574427

RESUMO

In 1998, Bill Gray and colleagues showed that warm temperatures trigger arabidopsis hypocotyl elongation in an auxin-dependent manner. This laid the foundation for a vibrant research discipline. With several active members of the 'thermomorphogenesis' community, we here reflect on 25 years of elevated ambient temperature research and look to the future.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Temperatura , Hipocótilo/metabolismo , Ácidos Indolacéticos
3.
Plants (Basel) ; 12(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37111933

RESUMO

Histone modifications are epigenetic mechanisms, termed relative to genetics, and they refer to the induction of heritable changes without altering the DNA sequence. It is widely known that DNA sequences precisely modulate plant phenotypes to adapt them to the changing environment; however, epigenetic mechanisms also greatly contribute to plant growth and development by altering chromatin status. An increasing number of recent studies have elucidated epigenetic regulations on improving plant growth and adaptation, thus making contributions to the final yield. In this review, we summarize the recent advances of epigenetic regulatory mechanisms underlying crop flowering efficiency, fruit quality, and adaptation to environmental stimuli, especially to abiotic stress, to ensure crop improvement. In particular, we highlight the major discoveries in rice and tomato, which are two of the most globally consumed crops. We also describe and discuss the applications of epigenetic approaches in crop breeding programs.

4.
Plant Physiol ; 192(1): 582-600, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36537119

RESUMO

Thermomorphogenesis is, among other traits, characterized by enhanced hypocotyl elongation due to the induction of auxin biosynthesis genes like YUCCA8 by transcription factors, most notably PHYTOCHROME INTERACTING FACTOR 4 (PIF4). Efficient binding of PIF4 to the YUCCA8 locus under warmth depends on HISTONE DEACETYLASE 9 (HDA9) activity, which mediates histone H2A.Z depletion at the YUCCA8 locus. However, HDA9 lacks intrinsic DNA-binding capacity, and how HDA9 is recruited to YUCCA8, and possibly other PIF4-target sites, is currently not well understood. The Mediator complex functions as a bridge between transcription factors bound to specific promoter sequences and the basal transcription machinery containing RNA polymerase II. Mutants of Mediator component Mediator25 (MED25) exhibit reduced hypocotyl elongation and reduced expression of YUCCA8 at 27°C. In line with a proposed role for MED25 in thermomorphogenesis in Arabidopsis (Arabidopsis thaliana), we demonstrated an enhanced association of MED25 to the YUCCA8 locus under warmth and interaction of MED25 with both PIF4 and HDA9. Genetic analysis confirmed that MED25 and HDA9 operate in the same pathway. Intriguingly, we also showed that MED25 destabilizes HDA9 protein. Based on our findings, we propose that MED25 recruits HDA9 to the YUCCA8 locus by binding to both PIF4 and HDA9.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complexo Mediador/genética , Complexo Mediador/metabolismo , Fitocromo/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
5.
Physiol Plant ; 174(5): e13771, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36053855

RESUMO

Downy mildew, caused by the biotrophic oomycete Plasmopara viticola, is one of the most economically significant grapevine diseases worldwide. Current strategies to cope with this threat rely on the massive use of chemical compounds during each cultivation season. The economic costs and negative environmental impact associated with these applications increased the urge to search for sustainable strategies of disease control. Improved knowledge of plant mechanisms to counteract pathogen infection may allow the development of alternative strategies for plant protection. Epigenetic regulation, in particular DNA methylation, is emerging as a key factor in the context of plant-pathogen interactions associated with the expression modulation of defence genes. To improve our understanding of the genetic and epigenetic mechanisms underpinning grapevine response to P. viticola, we studied the modulation of both 5-mC methylation and gene expression at 6 and 24 h post-infection (hpi). Leaves of two table grape genotypes (Vitis vinifera), selected by breeding activities for their contrasting level of susceptibility to the pathogen, were analysed. Following pathogen infection, we found variations in the 5-mC methylation level and the gene expression profile. The results indicate a genotype-specific response to pathogen infection. The tolerant genotype (N23/018) at 6 hpi exhibits a lower methylation level compared to the susceptible one (N20/020), and it shows an early modulation (at 6 hpi) of defence and epigenetic-related genes during P. viticola infection. These data suggest that the timing of response is an important mechanism to efficiently counteract the pathogen attack.


Assuntos
Oomicetos , Vitis , Transcriptoma , Resistência à Doença/genética , Metilação , Epigênese Genética , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Oomicetos/genética , Vitis/genética , Vitis/metabolismo , Genótipo
6.
Plants (Basel) ; 11(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36015381

RESUMO

Taraxacum kok-saghyz (Tks), also known as the Russian dandelion, is a recognized alternative source of natural rubber quite comparable, for quality and use, to the one obtained from the so-called rubber tree, Hevea brasiliensis. In addition to that, Tks roots produce several other compounds, including inulin, whose use in pharmaceutical and dietary products is quite extensive. Histone-modifying genes (HMGs) catalyze a series of post-translational modifications that affect chromatin organization and conformation, which, in turn, regulate many downstream processes, including gene expression. In this study, we present the first analysis of HMGs in Tks. Altogether, we identified 154 putative Tks homologs: 60 HMTs, 34 HDMs, 42 HATs, and 18 HDACs. Interestingly, whilst most of the classes showed similar numbers in other plant species, including M. truncatula and A. thaliana, HATs and HMT-PRMTs were indeed more abundant in Tks. Composition and structure analysis of Tks HMG proteins showed, for some classes, the presence of novel domains, suggesting a divergence from the canonical HMG model. The analysis of publicly available transcriptome datasets, combined with spatial expression of different developmental tissues, allowed us to identify several HMGs with a putative role in metabolite biosynthesis. Overall, our work describes HMG genomic organization and sets the premises for the functional characterization of epigenetic modifications in rubber-producing plants.

7.
New Phytol ; 236(2): 333-349, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35949052

RESUMO

The plant nucleus provides a major hub for environmental signal integration at the chromatin level. Multiple light signaling pathways operate and exchange information by regulating a large repertoire of gene targets that shape plant responses to a changing environment. In addition to the established role of transcription factors in triggering photoregulated changes in gene expression, there are eminent reports on the significance of chromatin regulators and nuclear scaffold dynamics in promoting light-induced plant responses. Here, we report and discuss recent advances in chromatin-regulatory mechanisms modulating plant architecture and development in response to light, including the molecular and physiological roles of key modifications such as DNA, RNA and histone methylation, and/or acetylation. The significance of the formation of biomolecular condensates of key light signaling components is discussed and potential applications to agricultural practices overviewed.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , DNA , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Luz , Plantas/metabolismo , RNA/metabolismo , Fatores de Transcrição/metabolismo
8.
Plant Cell ; 34(11): 4213-4231, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35929801

RESUMO

TANDEM ZINC-FINGER/PLUS3 (TZP) is a transcriptional regulator that acts at the crossroads of light and photoperiodic signaling. Here, we unveil a role for TZP in fine-tuning hypocotyl elongation under red light and long-day conditions. We provide genetic evidence for a synergistic action between TZP and PHOTOPERIODIC CONTROL OF HYPOCOTYL 1 (PCH1) in regulating the protein abundance of PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and downstream gene expression in response to red light and long days (LDs). Furthermore, we show that TZP is a positive regulator of the red/far-red light receptor and thermosensor phytochrome B (phyB) by promoting phyB protein abundance, nuclear body formation, and signaling. Our data therefore assign a function to TZP in regulating two key red light signaling components, phyB and PIF4, but also uncover a new role for PCH1 in regulating hypocotyl elongation in LDs. Our findings provide a framework for the understanding of the mechanisms associated with the TZP signal integration network and their importance for optimizing plant growth and adaptation to a changing environment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Fitocromo B/genética , Fitocromo B/metabolismo , Hipocótilo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Fitocromo/metabolismo , Zinco/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Plants (Basel) ; 11(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35161303

RESUMO

Histone methylation and acetylation are key processes in the epigenetic regulation of plant growth, development, and responses to environmental stimuli. The genes encoding for the enzymes that are responsible for these chromatin post-translational modifications, referred to as histone modification genes (HMGs), have been poorly investigated in Leguminosae species, despite their importance for establishment and activity of nitrogen-fixing nodules. In silico analysis of Medicago truncatula HMGs identified 81 histone methyltransferases, 46 histone demethylases, 64 histone acetyltransferases, and 15 histone deacetylases. MtHMGs were analyzed for their structure and domain composition, and some combinations that were not yet reported in other plant species were identified. Genes have been retrieved from M. truncatula A17 and R108 genotypes as well as M. sativa CADL and Zhongmu No.1; the gene number and distribution were compared with Arabidopsis thaliana. Furthermore, by analyzing the expression data that were obtained at various developmental stages and in different zones of nitrogen-fixing nodules, we identified MtHMG loci that could be involved in nodule development and function. This work sets a reference for HMG genomic organization in legumes which will be useful for functional investigation that is aimed at elucidating HMGs involvement in nodule development and symbiotic nitrogen fixation.

10.
New Phytol ; 234(4): 1144-1160, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35037247

RESUMO

Many environmental conditions fluctuate and organisms need to respond effectively. This is especially true for temperature cues that can change in minutes to seasons and often follow a diurnal rhythm. Plants cannot migrate and most cannot regulate their temperature. Therefore, a broad array of responses have evolved to deal with temperature cues from freezing to heat stress. A particular response to mildly elevated temperatures is called thermomorphogenesis, a suite of morphological adaptations that includes thermonasty, formation of thin leaves and elongation growth of petioles and hypocotyl. Thermomorphogenesis allows for optimal performance in suboptimal temperature conditions by enhancing the cooling capacity. When temperatures rise further, heat stress tolerance mechanisms can be induced that enable the plant to survive the stressful temperature, which typically comprises cellular protection mechanisms and memory thereof. Induction of thermomorphogenesis, heat stress tolerance and stress memory depend on gene expression regulation, governed by diverse epigenetic processes. In this Tansley review we update on the current knowledge of epigenetic regulation of heat stress tolerance and elevated temperature signalling and response, with a focus on thermomorphogenesis regulation and heat stress memory. In particular we highlight the emerging role of H3K4 methylation marks in diverse temperature signalling pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Plantas/metabolismo , Temperatura
11.
Genes (Basel) ; 12(5)2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946956

RESUMO

Cryptochromes are flavin-containing blue light photoreceptors, present in most kingdoms, including archaea, bacteria, plants, animals and fungi. They are structurally similar to photolyases, a class of flavoproteins involved in light-dependent repair of UV-damaged DNA. Cryptochromes were first discovered in Arabidopsis thaliana in which they control many light-regulated physiological processes like seed germination, de-etiolation, photoperiodic control of the flowering time, cotyledon opening and expansion, anthocyanin accumulation, chloroplast development and root growth. They also regulate the entrainment of plant circadian clock to the phase of light-dark daily cycles. Here, we review the molecular mechanisms by which plant cryptochromes control the synchronisation of the clock with the environmental light. Furthermore, we summarise the circadian clock-mediated changes in cell cycle regulation and chromatin organisation and, finally, we discuss a putative role for plant cryptochromes in the epigenetic regulation of genes.


Assuntos
Relógios Circadianos , Criptocromos/metabolismo , Proteínas de Plantas/metabolismo , Criptocromos/genética , Epigênese Genética , Proteínas de Plantas/genética , Plantas/genética , Plantas/metabolismo
12.
Methods Mol Biol ; 2297: 7-19, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33656665

RESUMO

Light triggers changes in plant nuclear architecture to control differentiation, adaptation, and growth. A series of genetic, molecular, and imaging approaches have revealed that the nucleus forms a hub for photo-induced protein interactions and gene regulatory events. However, the mechanism and function of light-induced nuclear compartmentalization is still unclear. This chapter provides detailed experimental protocols for examining the morphology and potential functional significance of light signaling components that localize in light-induced subnuclear domains, also known as photobodies. We describe how immunolabeling of endogenous proteins and fluorescent in situ hybridization (FISH) could be combined with confocal imaging of fluorescently tagged proteins to assess co-localization in Arabidopsis nuclei. Furthermore, we employ a super-resolution imaging approach to study the morphology of photobodies at unprecedented detail.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Proteínas de Arabidopsis/química , Imunofluorescência , Hibridização in Situ Fluorescente , Indóis/química , Microscopia Confocal , Folhas de Planta
13.
J Exp Bot ; 71(20): 6211-6225, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32687569

RESUMO

Plants tightly control gene transcription to adapt to environmental conditions and steer growth and development. Different types of epigenetic modifications are instrumental in these processes. In recent years, an important role for the chromatin-modifying RPD3/HDA1 class I HDAC HISTONE DEACETYLASE 9 (HDA9) emerged in the regulation of a multitude of plant traits and responses. HDACs are widely considered transcriptional repressors and are typically part of multiprotein complexes containing co-repressors, DNA, and histone-binding proteins. By catalyzing the removal of acetyl groups from lysine residues of histone protein tails, HDA9 negatively controls gene expression in many cases, in concert with interacting proteins such as POWERDRESS (PWR), HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 15 (HOS15), WRKY53, ELONGATED HYPOCOTYL 5 (HY5), ABA INSENSITIVE 4 (ABI4), and EARLY FLOWERING 3 (ELF3). However, HDA9 activity has also been directly linked to transcriptional activation. In addition, following the recent breakthrough discovery of mutual negative feedback regulation between HDA9 and its interacting WRKY-domain transcription factor WRKY53, swift progress in gaining understanding of the biology of HDA9 is expected. In this review, we summarize knowledge on this intriguing versatile-and long under-rated-protein and propose novel leads to further unravel HDA9-governed molecular networks underlying plant development and environmental biology.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Aclimatação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/genética , Desenvolvimento Vegetal/genética , Fatores de Transcrição/genética
14.
J Exp Bot ; 71(17): 5247-5255, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32215554

RESUMO

Light and temperature shape the developmental trajectory and morphology of plants. Changes in chromatin organization and nuclear architecture can modulate gene expression and lead to short- and long-term plant adaptation to the environment. Here, we review recent reports investigating how changes in chromatin composition, structure, and topology modulate gene expression in response to fluctuating light and temperature conditions resulting in developmental and physiological responses. Furthermore, the potential application of novel revolutionary techniques, such Hi-C, RNA fluorescence in situ hybridization (FISH) and padlock-FISH, to study the impact of environmental stimuli such as light and temperature on nuclear compartmentalization in plants is discussed.


Assuntos
Cromatina , Plantas , Núcleo Celular , Regulação da Expressão Gênica de Plantas , Hibridização in Situ Fluorescente , Plantas/genética , Temperatura
15.
Plant Physiol ; 183(2): 793-807, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32123040

RESUMO

RNA splicing is a fundamental mechanism contributing to the definition of the cellular protein population in any given environmental condition. DNA-DAMAGE REPAIR/TOLERATION PROTEIN111 (DRT111)/SPLICING FACTOR FOR PHYTOCHROME SIGNALING is a splicing factor previously shown to interact with phytochrome B and characterized for its role in splicing of pre-mRNAs involved in photomorphogenesis. Here, we show that DRT111 interacts with Arabidopsis (Arabidopsis thaliana) Splicing Factor1, involved in 3' splicing site recognition. Double- and triple-mutant analysis shows that DRT111 controls splicing of ABI3 and acts upstream of the splicing factor SUPPRESSOR OF ABI3-ABI5. DRT111 is highly expressed in seeds and stomata of Arabidopsis and is induced by long-term treatments of polyethylene glycol and abscisic acid (ABA). DRT111 knock-out mutants are defective in ABA-induced stomatal closure and are hypersensitive to ABA during seed germination. Conversely, DRT111 overexpressing plants show ABA-hyposensitive seed germination. RNA-sequencing experiments show that in dry seeds, DRT111 controls expression and splicing of genes involved in osmotic-stress and ABA responses, light signaling, and mRNA splicing, including targets of ABSCISIC ACID INSENSITIVE3 (ABI3) and PHYTOCHROME INTERACTING FACTORs (PIFs). Consistently, expression of the germination inhibitor SOMNUS, induced by ABI3 and PIF1, is upregulated in imbibed seeds of drt111-2 mutants. Together, these results indicate that DRT111 controls sensitivity to ABA during seed development, germination, and stomatal movements, and integrates ABA- and light-regulated pathways to control seed germination.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , DNA Ligases/metabolismo , Germinação/fisiologia , Fatores de Processamento de RNA/metabolismo , Sementes/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , DNA Ligases/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Germinação/genética , Fatores de Processamento de RNA/genética , Sementes/efeitos dos fármacos , Sementes/genética
16.
Physiol Plant ; 169(3): 301-311, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32053223

RESUMO

The terrestrial environment is complex, with many parameters fluctuating on daily and seasonal basis. Plants, in particular, have developed complex sensory and signaling networks to extract and integrate information about their surroundings in order to maximize their fitness and mitigate some of the detrimental effects of their sessile lifestyles. Light and temperature each provide crucial insights on the surrounding environment and, in combination, allow plants to appropriately develop, grow and adapt. Cross-talk between light and temperature signaling cascades allows plants to time key developmental decisions to ensure they are 'in sync' with their environment. In this review, we discuss the major players that regulate light and temperature signaling, and the cross-talk between them, in reference to a crucial developmental decision faced by plants: to bloom or not to bloom?


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis , Flores , Regulação da Expressão Gênica de Plantas , Luz , Reprodução , Transdução de Sinais , Temperatura
17.
Proc Natl Acad Sci U S A ; 116(50): 25343-25354, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767749

RESUMO

Many plant species respond to unfavorable high ambient temperatures by adjusting their vegetative body plan to facilitate cooling. This process is known as thermomorphogenesis and is induced by the phytohormone auxin. Here, we demonstrate that the chromatin-modifying enzyme HISTONE DEACETYLASE 9 (HDA9) mediates thermomorphogenesis but does not interfere with hypocotyl elongation during shade avoidance. HDA9 is stabilized in response to high temperature and mediates histone deacetylation at the YUCCA8 locus, a rate-limiting enzyme in auxin biosynthesis, at warm temperatures. We show that HDA9 permits net eviction of the H2A.Z histone variant from nucleosomes associated with YUCCA8, allowing binding and transcriptional activation by PHYTOCHROME INTERACTING FACTOR 4, followed by auxin accumulation and thermomorphogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Histona Desacetilases/metabolismo , Histonas/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/genética , Histonas/genética , Temperatura Alta , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Ligação Proteica
18.
Curr Opin Plant Biol ; 45(Pt A): 103-111, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29909288

RESUMO

Environmental stimuli play a major role in modulating growth and development throughout the life-cycle of a plant. Quantitative and qualitative variations in light and temperature trigger changes in gene expression that ultimately shape plant morphology for adaptation and survival. Although the phenotypic and transcriptomic basis of plant responses to the constantly changing environment have been examined for decades, the relationship between global changes in nuclear architecture and adaption to environmental stimuli is just being uncovered. This review presents recent discoveries investigating how changes in light and temperature trigger changes in chromatin structure and nuclear organization with a focus on the role of gene repositioning and chromatin accessibility in regulating gene expression.


Assuntos
Luz , Temperatura , Transcriptoma/genética , Expressão Gênica/genética
19.
Proc Natl Acad Sci U S A ; 115(19): E4503-E4511, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29686058

RESUMO

Integration of environmental signals and interactions among photoreceptors and transcriptional regulators is key in shaping plant development. TANDEM ZINC-FINGER PLUS3 (TZP) is an integrator of light and photoperiodic signaling that promotes flowering in Arabidopsis thaliana Here we elucidate the molecular role of TZP as a positive regulator of hypocotyl elongation. We identify an interacting partner for TZP, the transcription factor ZINC-FINGER HOMEODOMAIN 10 (ZFHD10), and characterize its function in coregulating the expression of blue-light-dependent transcriptional regulators and growth-promoting genes. By employing a genome-wide approach, we reveal that ZFHD10 and TZP coassociate with promoter targets enriched in light-regulated elements. Furthermore, using a targeted approach, we show that ZFHD10 recruits TZP to the promoters of key coregulated genes. Our findings not only unveil the mechanism of TZP action in promoting hypocotyl elongation at the transcriptional level but also assign a function to an uncharacterized member of the ZFHD transcription factor family in promoting plant growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Hipocótilo/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Hipocótilo/genética , Fotoperíodo , Transativadores/genética , Fatores de Transcrição/genética , Transcrição Gênica , Dedos de Zinco
20.
Front Plant Sci ; 8: 1564, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29033955

RESUMO

The sessile lifestyle of plants requires them to cope with stresses in situ. Plants overcome abiotic stresses by altering structure/morphology, and in some extreme conditions, by compressing the life cycle to survive the stresses in the form of seeds. Genetic and molecular studies have uncovered complex regulatory processes that coordinate stress adaptation and tolerance in plants, which are integrated at various levels. Investigating natural variation in stress responses has provided important insights into the evolutionary processes that shape the integrated regulation of adaptation and tolerance. This review primarily focuses on the current understanding of how transcriptional, post-transcriptional, post-translational, and epigenetic processes along with genetic variation orchestrate stress responses in plants. We also discuss the current and future development of computational tools to identify biologically meaningful factors from high dimensional, genome-scale data and construct the signaling networks consisting of these components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA