Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(11): 2784-2791, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36898059

RESUMO

We report results from quasi-elastic neutron scattering studies on the rotational dynamics of formamidinium (HC[NH2]2+, FA) and methylammonium (CH3NH3+, MA) cations in FA1-xMAxPbI3 with x = 0 and 0.4 and compare it to the dynamics in MAPbI3. For FAPbI3, the FA cation dynamics evolve from nearly isotropic rotations in the high-temperature (T > 285 K) cubic phase through reorientations between preferred orientations in the intermediate-temperature tetragonal phase (140 K < T ⩽ 285 K) to an even more complex dynamics, due to a disordered arrangement of the FA cations, in the low-temperature tetragonal phase (T ⩽ 140 K). For FA0.6MA0.4PbI3, the dynamics of the respective organic cations evolve from a relatively similar behavior to FAPbI3 and MAPbI3 at room temperature to a different behavior in the lower-temperature phases where the MA cation dynamics are a factor of 50 faster as compared to those of MAPbI3. This insight suggests that tuning the MA/FA cation ratio may be a promising approach to tailoring the dynamics and, in effect, optical properties of FA1-xMAxPbI3.

2.
Chem Mater ; 33(8): 2967-2975, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-34054217

RESUMO

Perovskite-type oxyhydrides are hydride-ion-conducting materials of promise for several types of technological applications; however, the conductivity is often too low for practical use and, on a fundamental level, the mechanism of hydride-ion diffusion remains unclear. Here, we, with the use of neutron scattering techniques, investigate the diffusional dynamics of hydride ions in the layered perovskite-type oxyhydride SrVO2H. By monitoring the intensity of the elastically scattered neutrons upon heating the sample from 100 to 430 K, we establish an onset temperature for diffusional hydride-ion dynamics at about 250 K. Above this temperature, the hydride ions are shown to exhibit two-dimensional diffusion restricted to the hydride-ion sublattice of SrVO2H and that occurs as a series of jumps of a hydride ion to a neighboring hydride-ion vacancy, with an enhanced rate for backward jumps due to correlation effects. Analysis of the temperature dependence of the neutron scattering data shows that the localized jumps of hydride ions are featured by a mean residence time of the order of 10 ps with an activation energy of 0.1 eV. The long-range diffusion of hydride ions occurs on the timescale of 1 ns and with an activation energy of 0.2 eV. The hydride-ion diffusion coefficient is found to be of the order of 1 × 10-6 cm2 s-1 in the temperature range of 300-430 K, which is similar to other oxyhydrides but higher than for proton-conducting perovskite analogues. Tuning of the hydride-ion vacancy concentration in SrVO2H thus represents a promising gateway to improve the ionic conductivity of this already highly hydride-ion-conducting material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA