Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(37): eadi7673, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39270021

RESUMO

Dysregulation of the mitogen-activated protein kinase interacting kinases 1/2 (MNK1/2)-eukaryotic initiation factor 4E (eIF4E) signaling axis promotes breast cancer progression. MNK1 is known to influence cancer stem cells (CSCs); self-renewing populations that support metastasis, recurrence, and chemotherapeutic resistance, making them a clinically relevant target. The precise function of MNK1 in regulating CSCs, however, remains unexplored. Here, we generated MNK1 knockout cancer cell lines, resulting in diminished CSC properties in vitro and slowed tumor growth in vivo. Using a multiomics approach, we functionally demonstrated that loss of MNK1 restricts tumor cell metabolic adaptation by reducing glycolysis and increasing dependence on oxidative phosphorylation. Furthermore, MNK1-null breast and pancreatic tumor cells demonstrated suppressed metastasis to the liver, but not the lung. Analysis of The Cancer Genome Atlas (TCGA) data from breast cancer patients validated the positive correlation between MNK1 and glycolytic enzyme protein expression. This study defines metabolic perturbations as a previously unknown consequence of targeting MNK1/2, which may be therapeutically exploited.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Hepáticas , Proteínas Serina-Treonina Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Animais , Linhagem Celular Tumoral , Camundongos , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Glicólise , Fosforilação Oxidativa , Transdução de Sinais
2.
Cancer Res Commun ; 4(8): 1963-1977, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39007345

RESUMO

Liver metastases (LM) remain a major cause of cancer-related death and are a major clinical challenge. LM and the female sex are predictors of a poorer response to immunotherapy but the underlying mechanisms remain unclear. We previously reported on a sexual dimorphism in the control of the tumor microenvironment (TME) of colorectal carcinoma liver metastases (CRCLM) and identified estrogen as a regulator of an immunosuppressive TME in the liver. Here we aimed to assess the effect of estrogen deprivation on the cytokine/chemokine profile associated with CRCLM, using a multiplex cytokine array and the RNAscope technology, and its effects on the innate and adaptive immune responses in the liver. We also evaluated the benefit of combining the selective estrogen-receptor degrader Fulvestrant with immune checkpoint blockade for the treatment of CRCLM. We show that estrogen depletion altered the cytokine/chemokine repertoire of the liver, decreased macrophage polarization, as reflected in reduced accumulation of tumor infiltrating M2 macrophages and increased the accumulation of CCL5+/CCR5+ CD8+ T and NKT cells in the liver TME. Similar results were obtained in a murine pancreatic ductal adenocarcinoma model. Importantly, treatment with Fulvestrant also increased the accumulation of CD8+CCL5+, CD8+CCR5+ T and NK cells in the liver TME and enhanced the therapeutic benefit of anti-PD1 immunotherapy, resulting in a significant reduction in the outgrowth of LM. Taken together, our results show that estrogen regulates immune cell recruitment to the liver and suggest that inhibition of estrogen action could potentiate the tumor-inhibitory effect of immunotherapy in hormone-independent and immunotherapy-resistant metastatic cancer. SIGNIFICANCE: The immune microenvironment of the liver plays a major role in controlling the expansion of hepatic metastases and is regulated by estrogen. We show that treatment of tumor-bearing mice with an estrogen receptor degrader potentiated an anti-metastatic effect of immunotherapy. Our results provide mechanistic insight into clinical findings and a rationale for evaluating the efficacy of combination anti-estrogen and immunotherapy for prevention and/or treatment of hepatic metastases in female patients.


Assuntos
Fulvestranto , Imunoterapia , Neoplasias Hepáticas , Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Animais , Camundongos , Feminino , Humanos , Imunoterapia/métodos , Fulvestranto/farmacologia , Fulvestranto/uso terapêutico , Antagonistas do Receptor de Estrogênio/farmacologia , Antagonistas do Receptor de Estrogênio/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/imunologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Masculino , Fígado/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/imunologia , Camundongos Endogâmicos C57BL
3.
Mol Cancer Ther ; 20(12): 2469-2482, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34552012

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, resistant to chemotherapy and associated with high incidence of liver metastases and poor prognosis. Using murine models of aggressive PDAC, we show here that in mice bearing hepatic metastases, treatment with the IGF-Trap, an inhibitor of type I insulin-like growth factor receptor (IGF-IR) signaling, profoundly altered the local, immunosuppressive tumor microenvironment in the liver, curtailing the recruitment of myeloid-derived suppressor cells, reversing innate immune cell polarization and inhibiting metastatic expansion. Significantly, we found that immunotherapy with anti-PD-1 antibodies also reduced the growth of experimental PDAC liver metastases, and this effect was enhanced when combined with IGF-Trap treatment, resulting in further potentiation of a T-cell response. Our results show that a combinatorial immunotherapy based on dual targeting of the prometastatic immune microenvironment of the liver via IGF blockade, on one hand, and reversing T-cell exhaustion on the other, can provide a significant therapeutic benefit in the management of PDAC metastases.


Assuntos
Adenocarcinoma/imunologia , Carcinoma Ductal Pancreático/imunologia , Fatores Imunológicos/imunologia , Terapia de Imunossupressão/métodos , Imunoterapia/métodos , Animais , Humanos , Camundongos , Metástase Neoplásica , Microambiente Tumoral
4.
Biomolecules ; 11(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916323

RESUMO

Triple negative breast cancer (TNBC) is associated with unfavorable prognosis and high relapse rates following chemotherapy. There is an urgent need to develop effective targeted therapy for this BC subtype. The type I insulin-like growth factor receptor (IGF-IR) was identified as a potential target for BC management. We previously reported on the production of the IGF-Trap, a soluble IGF-1R fusion protein that reduces the bioavailability of circulating IGF-1 and IGF-2 to the cognate receptor, impeding signaling. In nude mice xenotransplanted with the human TNBC MDA-MB-231 cells, we found variable responses to this inhibitor. We used this model to investigate potential resistance mechanisms to IGF-targeted therapy. We show here that prolonged exposure of MDA-MB-231 cells to the IGF-Trap in vitro selected a resistant subpopulation that proliferated unhindered in the presence of the IGF-Trap. We identified in these cells increased fibroblast growth factor receptor 1 (FGFR1) activation levels that sensitized them to the FGFR1-specific tyrosine kinase inhibitor PD166866. Treatment with this inhibitor caused cell cycle arrest in both the parental and resistant cells, markedly increasing cell death in the latter. When combined with the IGF-Trap, an increase in cell cycle arrest was observed in the resistant cells. Moreover, FGFR1 silencing increased the sensitivity of these cells to IGF-Trap treatment in vivo. Our data identify increased FGFR1 signaling as a resistance mechanism to targeted inhibition of the IGF-IR and suggest that dual IGF-1R/FGFR1 blockade may be required to overcome TNBC cell resistance to IGF-axis inhibitors.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Receptor IGF Tipo 1/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Ligantes , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor IGF Tipo 1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transplante Heterólogo , Neoplasias de Mama Triplo Negativas/metabolismo
5.
Cells ; 9(5)2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365498

RESUMO

The insulin-like growth factor (IGF)-axis was implicated in cancer progression and identified as a clinically important therapeutic target. Several IGF-I receptor (IGF-IR) targeting drugs including humanized monoclonal antibodies have advanced to phase II/III clinical trials, but to date, have not progressed to clinical use, due, at least in part, to interference with insulin receptor signaling and compensatory signaling by the insulin receptor (IR) isoform A that can bind IGF-II and initiate mitogenic signaling. Here we briefly review the current state of IGF-targeting biologicals, discuss some factors that may be responsible for their poor performance in the clinic and outline the stepwise bioengineering and validation of an IGF-Trap-a novel anti-cancer therapeutic that could bypass these limitations. The IGF-Trap is a heterotetramer, consisting of the entire extracellular domain of the IGF-IR fused to the Fc portion of human IgG1. It binds human IGF-I and IGF-II with a three-log higher affinity than insulin and could inhibit IGF-IR driven cellular functions such as survival, proliferation and invasion in multiple carcinoma cell models in vitro. In vivo, the IGF-Trap has favorable pharmacokinetic properties and could markedly reduce metastatic outgrowth of colon and lung carcinoma cells in the liver, outperforming IGF-IR and ligand-binding monoclonal antibodies. Moreover, IGF-Trap dose-response profiles correlate with their bio-availability profiles, as measured by the IGF kinase receptor-activation (KIRA) assay, providing a novel, surrogate biomarker for drug efficacy. Our studies identify the IGF-Trap as a potent, safe, anti-cancer therapeutic that could overcome some of the obstacles encountered by IGF-targeting biologicals that have already been evaluated in clinical settings.


Assuntos
Anticorpos Monoclonais/farmacologia , Receptor IGF Tipo 1/efeitos dos fármacos , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Anticorpos Monoclonais/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/efeitos dos fármacos , Preparações Farmacêuticas/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/efeitos dos fármacos
6.
Cancer Lett ; 483: 98-113, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32217106

RESUMO

Liver metastases remain a major cause of death from gastrointestinal tract cancers and other malignancies, such as breast and lung carcinomas. Understanding the underlying biology is essential for the design of effective therapies. We previously identified the chemokine CCL7 and its receptor CCR3 as critical mediators of invasion and metastasis in lung and colon carcinoma cells. Here we show that the CCL7/CCR3 axis regulates a late stage in invadopodia genesis namely, the targeting of MMP-9 to the invadopodia complex, thereby promoting invadopodia maturation and collagen degradation. We show that this process could be blocked by overexpression of a dominant negative RhoA in highly invasive cells, while a constitutively active RhoA upregulated invadopodia maturation in CCL7-silenced and poorly invasive and metastatic cells and also enhanced their metastatic potential in vivo, collectively, implicating RhoA activation in signaling downstream of CCL7. Blockade of the ERK or PI3K pathways by chemical inhibitors also inhibited invadopodia formation, but affected the initiation stage of invadopodia genesis. Our data implicate CCL7/CCR3 signaling in invadopodia maturation and suggest that chemokine signaling acts in concert with extracellular matrix-initiated signals to promote invasion and liver metastasis.


Assuntos
Carcinoma Pulmonar de Lewis/enzimologia , Movimento Celular , Quimiocina CCL7/metabolismo , Colágeno/metabolismo , Neoplasias do Colo/enzimologia , Neoplasias Hepáticas/enzimologia , Metaloproteinase 9 da Matriz/metabolismo , Podossomos/enzimologia , Animais , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patologia , Quimiocina CCL7/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Metaloproteinase 9 da Matriz/genética , Camundongos , Fosfatidilinositol 3-Quinase/metabolismo , Podossomos/genética , Podossomos/patologia , Transporte Proteico , Proteólise , Receptores CCR3/genética , Receptores CCR3/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
7.
Nat Commun ; 10(1): 5745, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848339

RESUMO

Liver metastases (LM) remain a major cause of cancer-associated death and a clinical challenge. Here we explore a sexual dimorphism observed in the regulation of the tumor immune microenvironment (TIME) of LM, wherein the accumulation of myeloid-derived suppressor cells (MDSC) and regulatory T cells in colon and lung carcinoma LM is TNFR2-dependent in female, but not in male mice. In ovariectomized mice, a marked reduction is observed in colorectal, lung and pancreatic carcinoma LM that is reversible by estradiol reconstitution. This is associated with reduced liver MDSC accumulation, increased interferon-gamma (IFN-γ) and granzyme B production in CD8+ T cells and reduced TNFR2, IDO2, TDO and Serpin B9 expression levels. Treatment with tamoxifen increases liver cytotoxic T cell accumulation and reduces colon cancer LM. The results identify estrogen as a regulator of a pro-metastatic immune microenvironment in the liver and a potential target in the management of liver metastatic disease.


Assuntos
Estrogênios/metabolismo , Neoplasias Hepáticas/secundário , Fígado/patologia , Linfócitos do Interstício Tumoral/imunologia , Microambiente Tumoral/imunologia , Animais , Linhagem Celular Tumoral/transplante , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Estradiol/administração & dosagem , Antagonistas de Estrogênios/farmacologia , Antagonistas de Estrogênios/uso terapêutico , Estrogênios/imunologia , Feminino , Humanos , Fígado/efeitos dos fármacos , Fígado/imunologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/prevenção & controle , Neoplasias Pulmonares/patologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Ovariectomia , Neoplasias Pancreáticas/patologia , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Fatores Sexuais , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Neoplasias Pancreáticas
8.
Sci Rep ; 8(1): 17361, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478273

RESUMO

The insulin-like growth factor (IGF) axis has been implicated in the progression of malignant disease and identified as a clinically important therapeutic target. Several IGF-1 receptor (IGF-1R) targeting drugs including humanized monoclonal antibodies have advanced to phase II/III clinical trials, but to date, have not progressed to clinical use, due, at least in part, to interference with insulin receptor signalling. We previously reported on the production of a soluble fusion protein consisting of the extracellular domain of human IGF-1R fused to the Fc portion of human IgG1 (first generation IGF-TRAP) that bound human IGF-1 and IGF-2 with a 3 log higher affinity than insulin. We showed that the IGF-TRAP had potent anti-cancer activity in several pre-clinical models of aggressive carcinomas. Here we report on the re-engineering of the IGF-TRAP with the aim of improving physicochemical properties and suitability for clinical applications. We show that cysteine-serine substitutions in the Fc hinge region of IGF-TRAP eliminated high-molecular-weight oligomerized species, while a further addition of a flexible linker, not only improved the pharmacokinetic profile, but also enhanced the therapeutic profile of the IGF-TRAP, as evaluated in an experimental colon carcinoma metastasis model. Dose-response profiles of the modified IGF-TRAPs correlated with their bio-availability profiles, as measured by the IGF kinase-receptor-activation (KIRA) assay, providing a novel, surrogate biomarker for drug efficacy. This study provides a compelling example of structure-based re-engineering of Fc-fusion-based biologics for better manufacturability that also significantly improved pharmacological parameters. It identifies the re-engineered IGF-TRAP as a potent anti-cancer therapeutic.


Assuntos
Antineoplásicos/farmacologia , Carcinoma/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Fator de Crescimento Insulin-Like I/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Animais , Produtos Biológicos/farmacologia , Biomarcadores Tumorais/metabolismo , Carcinoma/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Feminino , Células HEK293 , Humanos , Imunoglobulina G/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptor IGF Tipo 1/metabolismo
9.
Oncotarget ; 9(21): 15691-15704, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29644002

RESUMO

The growth of cancer metastases in the liver depends on a permissive interaction with the hepatic microenvironment and neutrophils can contribute to this interaction, either positively or negatively, depending on their phenotype. Here we investigated the role of IGF-I in the control of the tumor microenvironment in the liver, using mice with a conditional, liver-specific, IGF-I deficiency (iLID) induced by a single tamoxifen injection. In mice that had a sustained (3 weeks) IGF-I deficiency prior to the intrasplenic/portal inoculation of colon carcinoma MC-38 cells, we observed an increase in neutrophil accumulation in the liver relative to controls. However, unlike controls, these neutrophils did not acquire the (anti-inflammatory) tumor-promoting phenotype, as evidenced by retention of high ICAM-1 expression and nitric oxide production and low CXCR4, CCL5, and VEGF expression and arginase production, all characteristic of the (pro-inflammatory) phenotype. This coincided with an increase in apoptotic tumor cells and reduced metastasis. Neutrophils isolated from these mice also had reduced IGF-IR expression levels. These changes were not observed in iLID mice with a short-term (2 days) IGF-I depletion, despite a 70% reduction in their circulating IGF-I levels, indicating that a sustained IGF-I deficiency was necessary to alter the neutrophil phenotype. Similar results were obtained with the highly metastatic Lewis lung carcinoma subline H-59 cells and in mice injected with an IGF-Trap that blocks IGF-IR signaling by reducing ligand bioavailability. Our results implicate the IGF axis in neutrophil polarization and the induction of a pro-metastatic microenvironment in the liver.

10.
Oncogene ; 37(28): 3790-3805, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29651051

RESUMO

Liver metastases remain a major cause of death from gastrointestinal tract cancers as well as from other malignancies such as breast and lung carcinomas and melanoma. Understanding the underlying biology is essential for the design of effective targeted therapies. We previously reported that collagen IV α1/α2 overexpression in non-metastatic lung carcinoma (M27colIV) cells increased their metastatic ability, specifically to the liver and documented high collagen IV levels in surgical resections of liver metastases from diverse tumor types. Here, we aimed to elucidate the functional relevance of collagen IV to metastatic outgrowth in the liver. Gene expression profiling revealed in M27colIVcells significant increases in the expression of chemokines CCL5 (5.7-fold) and CCL7 (2.6-fold) relative to wild-type cells, and this was validated by qPCR and western blotting. Similarly, in human colon carcinoma KM12C and KM12SM cells with divergent liver-colonizing potentials, CCL7 and CCL5 production correlated with type IV collagen expression and the metastatic phenotype. CCL7 silencing by short hairpin RNA (shRNA) reduced experimental liver metastasis in both cell types, whereas CCL5 silencing reduced metastasis of M27colIV cells, implicating these cytokines in metastatic expansion in the liver. Subsequent functional analyses implicated both MEK/ERK and PI3K signaling upstream of CCL7 upregulation and identified CCL7 (but not CCL5) as a critical migration/invasion factor, acting via the chemokine receptor CCR3. Chemokine CCL5 was identified as a regulator of the T-cell immune response in the liver. Loss of CCL7 in KM12SM cells was also associated with altered E-cadherin and reduced vimentin and Snail expression, implicating it in epithelial-to-mesenchymal transition in these cells. Moreover, in clinical specimens of colon cancer liver metastases analyzed by immunohistochemistry, CCL5 and CCL7 levels paralleled those of collagen IV. The results identify the chemokines CCL5 and CCL7 as type IV collagen-regulated genes that promote liver metastasis by distinct and complementary mechanisms.


Assuntos
Quimiocina CCL5/metabolismo , Quimiocina CCL7/metabolismo , Colágeno Tipo IV/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Animais , Caderinas/metabolismo , Carcinoma Pulmonar de Lewis , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição da Família Snail/metabolismo , Regulação para Cima/fisiologia , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA