Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 150(24): 244108, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31255087

RESUMO

The study of the long-term evolution of slow chemical reactions is challenging because quantum-based reactive molecular dynamics simulation times are typically limited to hundreds of picoseconds. Here, the extended Lagrangian Born-Oppenheimer molecular dynamics formalism is used in conjunction with parallel replica dynamics to obtain an accurate tool to describe the long-term chemical dynamics of shock-compressed benzene. Langevin dynamics has been employed at different temperatures to calculate the first reaction times in liquid benzene at pressures and temperatures consistent with its unreacted Hugoniot. Our coupled engine runs for times on the order of nanoseconds (one to two orders of magnitude longer than traditional techniques) and is capable of detecting reactions that are characterized by rates significantly slower than we could study before. At lower pressures and temperatures, we mainly observe Diels-Alder metastable reactions, whereas at higher pressures and temperatures we observe stable polymerization reactions.

2.
J Chem Phys ; 150(2): 024107, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646702

RESUMO

A new parameterization for density functional tight binding (DFTB) theory, lanl31, has been developed for molecules containing carbon, hydrogen, nitrogen, and oxygen. Optimal values for the Hubbard Us, on-site energies, and the radial dependences of the bond integrals and repulsive potentials were determined by numerical optimization using simulated annealing to a modest database of ab initio-calculated atomization energies and interatomic forces. The transferability of the optimized DFTB parameterization has been assessed using the CHNO subset of the QM-9 database [R. Ramakrishnan et al., Sci. Data 1, 140022 (2014)]. These analyses showed that the errors in the atomization energies and interatomic forces predicted by our model are small and in the vicinity of the differences between density functional theory calculations with different basis sets and exchange-correlation functionals. Good correlations between the molecular dipole moments and HOMO-LUMO gaps predicted by lanl31 and the QM-9 data set are also found. Furthermore, the errors in the atomization energies and forces derived from lanl31 are significantly smaller than those obtained from the ReaxFF-lg reactive force field for organic materials [L. Liu et al., J. Phys. Chem. A 115, 11016 (2011)]. The lanl31 DFTB parameterization for C, H, N, and O has been applied to the molecular dynamics simulation of the principal Hugoniot of liquid nitromethane, liquid benzene, liquid nitrogen, pentaerythritol tetranitrate, trinitrotoluene, and cyclotetramethylene tetranitramine. The computed and measured Hugoniot loci are in excellent agreement with experiment, and we discuss the sensitivity of the loci to the underestimated shock heating that is a characteristic of classical molecular dynamics simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA