Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Plant Cell ; 26(2): 729-40, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24563202

RESUMO

In many cereal crops, meiotic crossovers predominantly occur toward the ends of chromosomes and 30 to 50% of genes rarely recombine. This limits the exploitation of genetic variation by plant breeding. Previous reports demonstrate that chiasma frequency can be manipulated in plants by depletion of the synaptonemal complex protein ZIPPER1 (ZYP1) but conflict as to the direction of change, with fewer chiasmata reported in Arabidopsis thaliana and more crossovers reported for rice (Oryza sativa). Here, we use RNA interference (RNAi) to reduce the amount of ZYP1 in barley (Hordeum vulgare) to only 2 to 17% of normal zygotene levels. In the ZYP1(RNAi) lines, fewer than half of the chromosome pairs formed bivalents at metaphase and many univalents were observed, leading to chromosome nondisjunction and semisterility. The number of chiasmata per cell was reduced from 14 in control plants to three to four in the ZYP1-depleted lines, although the localization of residual chiasmata was not affected. DNA double-strand break formation appeared normal, but the recombination pathway was defective at later stages. A meiotic time course revealed a 12-h delay in prophase I progression to the first labeled tetrads. Barley ZYP1 appears to function similarly to ZIP1/ZYP1 in yeast and Arabidopsis, with an opposite effect on crossover number to ZEP1 in rice, another member of the Poaceae.


Assuntos
Troca Genética , Hordeum/citologia , Hordeum/genética , Meiose/genética , Proteínas de Plantas/metabolismo , Complexo Sinaptonêmico/metabolismo , Cromossomos de Plantas/genética , Quebras de DNA de Cadeia Dupla , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Prófase Meiótica I , Dados de Sequência Molecular , Não Disjunção Genética , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
3.
J Exp Bot ; 64(8): 2139-54, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23554258

RESUMO

In barley (Hordeum vulgare L.), chiasmata (the physical sites of genetic crossovers) are skewed towards the distal ends of chromosomes, effectively consigning a large proportion of genes to recombination coldspots. This has the effect of limiting potential genetic variability, and of reducing the efficiency of map-based cloning and breeding approaches for this crop. Shifting the sites of recombination to more proximal chromosome regions by forward and reverse genetic means may be profitable in terms of realizing the genetic potential of the species, but is predicated upon a better understanding of the mechanisms governing the sites of these events, and upon the ability to recognize real changes in recombination patterns. The barley MutL Homologue (HvMLH3), a marker for class I interfering crossovers, has been isolated and a specific antibody has been raised. Immunolocalization of HvMLH3 along with the synaptonemal complex transverse filament protein ZYP1, used in conjunction with fluorescence in situ hybridization (FISH) tagging of specific barley chromosomes, has enabled access to the physical recombination landscape of the barley cultivars Morex and Bowman. Consistent distal localization of HvMLH3 foci throughout the genome, and similar patterns of HvMLH3 foci within bivalents 2H and 3H have been observed. A difference in total numbers of HvMLH3 foci between these two cultivars has been quantified, which is interpreted as representing genotypic variation in class I crossover frequency. Discrepancies between the frequencies of HvMLH3 foci and crossover frequencies derived from linkage analysis point to the existence of at least two crossover pathways in barley. It is also shown that interference of HvMLH3 foci is relatively weak compared with other plant species.


Assuntos
Cromossomos de Plantas/genética , Hordeum/genética , Estágio Paquíteno/genética , Arabidopsis/genética , Sequência de Bases , Mapeamento Cromossômico , Cromossomos de Plantas/fisiologia , Troca Genética/genética , Troca Genética/fisiologia , Ligação Genética/genética , Ligação Genética/fisiologia , Loci Gênicos/genética , Loci Gênicos/fisiologia , Genoma de Planta/genética , Genoma de Planta/fisiologia , Hordeum/fisiologia , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Estágio Paquíteno/fisiologia , Filogenia , Alinhamento de Sequência , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/fisiologia
4.
Plant Cell ; 24(10): 4096-109, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23104831

RESUMO

Meiosis involves reciprocal exchange of genetic information between homologous chromosomes to generate new allelic combinations. In cereals, the distribution of genetic crossovers, cytologically visible as chiasmata, is skewed toward the distal regions of the chromosomes. However, many genes are known to lie within interstitial/proximal regions of low recombination, creating a limitation for breeders. We investigated the factors underlying the pattern of chiasma formation in barley (Hordeum vulgare) and show that chiasma distribution reflects polarization in the spatiotemporal initiation of recombination, chromosome pairing, and synapsis. Consequently, meiotic progression in distal chromosomal regions occurs in coordination with the chromatin cycles that are a conserved feature of the meiotic program. Recombination initiation in interstitial and proximal regions occurs later than distal events, is not coordinated with the cycles, and rarely progresses to form chiasmata. Early recombination initiation is spatially associated with early replicating, euchromatic DNA, which is predominately found in distal regions. We demonstrate that a modest temperature shift is sufficient to alter meiotic progression in relation to the chromosome cycles. The polarization of the meiotic processes is reduced and is accompanied by a shift in chiasma distribution with an increase in interstitial and proximal chiasmata, suggesting a potential route to modify recombination in cereals.


Assuntos
Cromossomos de Plantas/metabolismo , Troca Genética , Hordeum/citologia , Meiose/fisiologia , Pareamento Cromossômico , Cromossomos de Plantas/ultraestrutura , Replicação do DNA , Hordeum/genética , Hordeum/fisiologia , Dados de Sequência Molecular , Complexo Sinaptonêmico , Temperatura
5.
Plant Mol Biol ; 74(4-5): 381-93, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20740374

RESUMO

Legumains, also known as Vacuolar Processing Enzymes (VPEs) have received considerable attention recently, as they share structural properties with mammalian caspase-1 and exhibit YVADase/caspase-1-like cleavage activity. Although many legumains have been cloned, knowledge about their detailed characteristics and intracellular localization is relatively limited. We previously identified several caspase-like activities activated by self-incompatibility (SI) in pollen; a DEVDase was required for programmed cell death (PCD), but YVADase was not (Bosch and Franklin-Tong in Proc Natl Acad Sci USA 104:18327-18332, 2007; Thomas and Franklin-Tong in Nature 429:305-309, 2004). Here we report identification of a legumain/VPE from Papaver rhoeas pollen (PrVPE1) that binds to the DEVD tetrapeptide, a signature substrate for caspase-3. A detailed characterization of the recombinant PrVPE1 cleavage activity revealed that, like other VPEs, it has YVADase activity and requires an acidic pH for activity. Unlike other legumain/VPEs, it also exhibits DEVDase and IETDase activities and apparently does not require processing for activity. The pollen-expressed PrVPE1 localizes to a reticulate compartment resembling the vacuole. Examination of YVADase activity using live-cell imaging of pollen tubes revealed YVADase activity in mitochondria of growing pollen tubes. The unexpected features of PrVPE1, together with evidence for YVADase activity in plant mitochondria, indicate that VPEs, YVADases, their localization and functions in plant cells merit further investigation.


Assuntos
Cisteína Endopeptidases/metabolismo , Papaver/enzimologia , Proteínas de Plantas/metabolismo , Sequência de Bases , Clonagem Molecular , Proteínas de Fluorescência Verde/análise , Mitocôndrias/enzimologia , Dados de Sequência Molecular , Papaver/genética , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Pólen/enzimologia , Pólen/genética , Proteínas Recombinantes/análise , Proteínas Recombinantes/metabolismo , Vacúolos/enzimologia
6.
Nature ; 459(7249): 992-5, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19483678

RESUMO

Higher plants produce seed through pollination, using specific interactions between pollen and pistil. Self-incompatibility is an important mechanism used in many species to prevent inbreeding; it is controlled by a multi-allelic S locus. 'Self' (incompatible) pollen is discriminated from 'non-self' (compatible) pollen by interaction of pollen and pistil S locus components, and is subsequently inhibited. In Papaver rhoeas, the pistil S locus product is a small protein that interacts with incompatible pollen, triggering a Ca(2+)-dependent signalling network, resulting in pollen inhibition and programmed cell death. Here we have cloned three alleles of a highly polymorphic pollen-expressed gene, PrpS (Papaver rhoeas pollen S), from Papaver and provide evidence that this encodes the pollen S locus determinant. PrpS is a single-copy gene linked to the pistil S gene (currently called S, but referred to hereafter as PrsS for Papaver rhoeas stigma S determinant). Sequence analysis indicates that PrsS and PrpS are equally ancient and probably co-evolved. PrpS encodes a novel approximately 20-kDa protein. Consistent with predictions that it is a transmembrane protein, PrpS is associated with the plasma membrane. We show that a predicted extracellular loop segment of PrpS interacts with PrsS and, using PrpS antisense oligonucleotides, we demonstrate that PrpS is involved in S-specific inhibition of incompatible pollen. Identification of PrpS represents a major advance in our understanding of the Papaver self-incompatibility system. As a novel cell-cell recognition determinant it contributes to the available information concerning the origins and evolution of cell-cell recognition systems involved in discrimination between self and non-self, which also include histocompatibility systems in primitive chordates and vertebrates.


Assuntos
Papaver/fisiologia , Pólen/fisiologia , Alelos , Sequência de Aminoácidos , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ligação Genética , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/citologia , Polinização/fisiologia , Reprodução/fisiologia
7.
Nature ; 444(7118): 490-3, 2006 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17086195

RESUMO

In higher plants, sexual reproduction involves interactions between pollen and pistil. A key mechanism to prevent inbreeding is self-incompatibility through rejection of incompatible ('self') pollen. In Papaver rhoeas, S proteins encoded by the stigma interact with incompatible pollen, triggering a Ca2+-dependent signalling network resulting in pollen tube inhibition and programmed cell death. The cytosolic phosphoprotein p26.1, which has been identified in incompatible pollen, shows rapid, self-incompatibility-induced Ca2+-dependent hyperphosphorylation in vivo. Here we show that p26.1 comprises two proteins, Pr-p26.1a and Pr-p26.1b, which are soluble inorganic pyrophosphatases (sPPases). These proteins have classic Mg2+-dependent sPPase activity, which is inhibited by Ca2+, and unexpectedly can be phosphorylated in vitro. We show that phosphorylation inhibits sPPase activity, establishing a previously unknown mechanism for regulating eukaryotic sPPases. Reduced sPPase activity is predicted to result in the inhibition of many biosynthetic pathways, suggesting that there may be additional mechanisms of self-incompatibility-mediated pollen tube inhibition. We provide evidence that sPPases are required for growth and that self-incompatibility results in an increase in inorganic pyrophosphate, implying a functional role for Pr-p26.1.


Assuntos
Papaver/enzimologia , Proteínas de Plantas/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Pólen/enzimologia , Pirofosfatases/metabolismo , Endogamia , Dados de Sequência Molecular , Papaver/fisiologia , Fosfoproteínas/metabolismo , Proteínas de Plantas/química , Pirofosfatases/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA