Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Pain Res (Lausanne) ; 5: 1454278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036783

RESUMO

[This corrects the article DOI: 10.3389/fpain.2024.1374929.].

2.
Front Pain Res (Lausanne) ; 5: 1374929, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784786

RESUMO

The temporomandibular joint (TMJ) consists of bone, cartilage, ligaments, and associated masticatory muscles and tendons that coordinate to enable mastication in mammals. The TMJ is innervated by the trigeminal nerve (CNV), containing axons of motor and somatosensory neurons. Somatosensation includes touch, temperature, proprioception, and pain that enables mammals to recognize and react to stimuli for survival. The somatosensory innervation of the TMJ remains poorly defined. Disorders of the TMJ (TMD) are of diverse etiology and presentation. Some known symptoms associated with TMD include facial, shoulder, or neck pain, jaw popping or clicking, headaches, toothaches, and tinnitus. Acute or chronic pain in TMD stems from the activation of somatosensory nociceptors. Treatment of TMD may involve over- the-counter and prescription medication, nonsurgical treatments, and surgical treatments. In many cases, treatment achieves only a temporary relief of symptoms including pain. We suggest that defining the sensory innervation of the temporomandibular joint and its associated tissues with a specific focus on the contribution of peripheral innervation to the development of chronic pain could provide insights into the origins of joint pain and facilitate the development of improved analgesics and treatments for TMD.

3.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430826

RESUMO

Many studies have been conducted to elucidate the role of Type VI collagen in muscle and tendon, however, its role in oral tissues remains unclear. In this study, an α2(VI) deficient mouse (Col6α2-KO) model was used to examine the role of Type VI collagen in oral tissues. Tissue volume and mineral density were measured in oral tissues by µCT. Proteome analysis was performed using protein extracted from alveolar bone. In addition, alveolar bone was evaluated with a periodontitis induced model. µCT analysis showed the Col6α2-KO mice had less volume of alveolar bone, dentin and dental pulp, while the width of periodontal ligament (PDL) was greater than WT. The mineral density in alveolar bone and dentin were elevated in Col6α2-KO mice compared with WT. Our proteome analysis showed significant changes in proteins related to ECM organization and elevation of proteins associated with biomineralization in the Col6α2-KO mice. In induced periodontitis, Col6α2-KO mice had greater alveolar bone loss compared with WT. In conclusion, Type VI collagen has a role in controlling biomineralization in alveolar bone and that changes in the ECM of alveolar bone could be associated with greater bone loss due to periodontitis.


Assuntos
Perda do Osso Alveolar , Periodontite , Camundongos , Animais , Colágeno Tipo VI/genética , Proteoma , Camundongos Knockout , Perda do Osso Alveolar/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA