Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 19(9): 1091-1096, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37322159

RESUMO

As antimicrobial resistance threatens our ability to treat common bacterial infections, new antibiotics with limited cross-resistance are urgently needed. In this regard, natural products that target the bacterial ribosome have the potential to be developed into potent drugs through structure-guided design, provided their mechanisms of action are well understood. Here we use inverse toeprinting coupled to next-generation sequencing to show that the aromatic polyketide tetracenomycin X primarily inhibits peptide bond formation between an incoming aminoacyl-tRNA and a terminal Gln-Lys (QK) motif in the nascent polypeptide. Using cryogenic electron microscopy, we reveal that translation inhibition at QK motifs occurs via an unusual mechanism involving sequestration of the 3' adenosine of peptidyl-tRNALys in the drug-occupied nascent polypeptide exit tunnel of the ribosome. Our study provides mechanistic insights into the mode of action of tetracenomycin X on the bacterial ribosome and suggests a path forward for the development of novel aromatic polyketide antibiotics.


Assuntos
Antibacterianos , Policetídeos , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos/farmacologia , Peptídeos/química , Policetídeos/farmacologia , Biossíntese de Proteínas
2.
Nat Commun ; 12(1): 5340, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504068

RESUMO

Free L-tryptophan (L-Trp) stalls ribosomes engaged in the synthesis of TnaC, a leader peptide controlling the expression of the Escherichia coli tryptophanase operon. Despite extensive characterization, the molecular mechanism underlying the recognition and response to L-Trp by the TnaC-ribosome complex remains unknown. Here, we use a combined biochemical and structural approach to characterize a TnaC variant (R23F) with greatly enhanced sensitivity for L-Trp. We show that the TnaC-ribosome complex captures a single L-Trp molecule to undergo termination arrest and that nascent TnaC prevents the catalytic GGQ loop of release factor 2 from adopting an active conformation at the peptidyl transferase center. Importantly, the L-Trp binding site is not altered by the R23F mutation, suggesting that the relative rates of L-Trp binding and peptidyl-tRNA cleavage determine the tryptophan sensitivity of each variant. Thus, our study reveals a strategy whereby a nascent peptide assists the ribosome in detecting a small metabolite.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Iniciação Traducional da Cadeia Peptídica , Ribossomos/genética , Triptofano/química , Substituição de Aminoácidos , Sítios de Ligação , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutação , Óperon , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Triptofano/metabolismo
3.
Mol Microbiol ; 105(5): 741-754, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28618091

RESUMO

Pneumococcal natural transformation contributes to genomic plasticity, antibiotic resistance development and vaccine escape. Streptococcus pneumoniae, like many other naturally transformable species, has evolved sophisticated protein machinery for the binding and uptake of DNA. Two proteins encoded by the comF operon, ComFA and ComFC, are involved in transformation but their exact molecular roles remain unknown. In this study, we provide experimental evidence that ComFA binds to single stranded DNA (ssDNA) and has ssDNA-dependent ATPase activity. We show that both ComFA and ComFC are essential for the transformation process in pneumococci. Moreover, we show that these proteins interact with each other and with other proteins involved in homologous recombination, such as DprA, thus placing the ComFA-ComFC duo at the interface between DNA uptake and DNA recombination during transformation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Transformação Bacteriana/fisiologia , Adenosina Trifosfatases/genética , Proteínas de Bactérias/metabolismo , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Recombinação Homóloga , Proteínas de Membrana/metabolismo , Ligação Proteica , Recombinases Rec A/metabolismo , Recombinação Genética , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Transformação Bacteriana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA