RESUMO
The objective of this study is to describe the alterations occurring during the neurodegenerative process in skin fibroblast cultures from C9orf72 patients. We characterized the oxidative stress, autophagy flux, small ubiquitin-related protein SUMO2/3 levels as well as the mitochondrial function in skin fibroblast cultures from C9orf72 patients. All metabolic and bioenergetic findings were further correlated with gene expression data obtained from RNA sequencing analysis. Fibroblasts from C9orf72 patients showed a 30% reduced expression of C9orf72, ~3-fold increased levels of oxidative stress and impaired mitochondrial function obtained by measuring the enzymatic activities of mitochondrial respiratory chain complexes, specifically of complex III activity. Furthermore, the results also reveal that C9orf72 patients showed an accumulation of p62 protein levels, suggesting the alteration of the autophagy process, and significantly higher protein levels of SUMO2/3 (p = 0.03). Our results provide new data reinforcing that C9orf72 cells suffer from elevated oxidative damage to biomolecules and organelles and from increased protein loads, leading to insufficient autophagy and an increase in SUMOylation processes.
RESUMO
Trisomy 20 mosaicism is a common abnormality found in prenatal diagnosis. Its clinical significance remains unclear since approximately 90-93% of cases result in normal phenotype. Only 5 cases of non-mosaic trisomy 20 in amniotic fluid culture surviving beyond the first trimester have been reported. Moreover, trisomic cells are generally not detectable in blood and have only been reported in three cases. We present a case of non-mosaic trisomy 20 found in chorionic villi sample and amniotic fluid culture in a fetus with minor abnormalities not detected by ultrasound examination. Pathological examination of the fetus only revealed right pulmonary isomerism and camptodactily, and no major malformations were disclosed. Trisomic lineage was also detected in fetal blood, kidney, skin and brain tissue cultures. Molecular analysis revealed that the extra chromosome 20 was originated in paternal meiosis. To our knowledge, we report the first prenatal case of non-mosaic trisomy 20 of paternal origin that has been confirmed in several fetal tissues, including blood, in a fetus with minor malformations not detected prenatally.