Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Toxics ; 12(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38668486

RESUMO

Acute intoxication with organophosphorus (OP) cholinesterase inhibitors can produce seizures that rapidly progress to life-threatening status epilepticus. Significant research effort has been focused on investigating the involvement of muscarinic acetylcholine receptors (mAChRs) in OP-induced seizure activity. In contrast, there has been far less attention on nicotinic AChRs (nAChRs) in this context. Here, we address this data gap using a combination of in vitro and in vivo models. Pharmacological antagonism and genetic deletion of α4, but not α7, nAChR subunits prevented or significantly attenuated OP-induced electrical spike activity in acute hippocampal slices and seizure activity in mice, indicating that α4 nAChR activation is necessary for neuronal hyperexcitability triggered by acute OP exposures. These findings not only suggest that therapeutic strategies for inhibiting the α4 nAChR subunit warrant further investigation as prophylactic and immediate treatments for acute OP-induced seizures, but also provide mechanistic insight into the role of the nicotinic cholinergic system in seizure generation.

2.
Nat Commun ; 15(1): 526, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228630

RESUMO

The inner ear is the hub where hair cells (HCs) transduce sound, gravity, and head acceleration stimuli to the brain. Hearing and balance rely on mechanosensation, the fastest sensory signals transmitted to the brain. The mechanoelectrical transducer (MET) channel is the entryway for the sound-balance-brain interface, but the channel-complex composition is not entirely known. Here, we report that the mouse utilizes Piezo1 (Pz1) and Piezo2 (Pz2) isoforms as MET-complex components. The Pz channels, expressed in HC stereocilia, and cell lines are co-localized and co-assembled with MET complex partners. Mice expressing non-functional Pz1 and Pz2 at the ROSA26 locus have impaired auditory and vestibular traits that can only be explained if the Pzs are integral to the MET complex. We suggest that Pz subunits constitute part of the MET complex and that interactions with other MET complex components yield functional MET units to generate HC MET currents.


Assuntos
Orelha Interna , Células Ciliadas Auditivas Internas , Animais , Camundongos , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas/metabolismo , Estereocílios/metabolismo , Orelha Interna/metabolismo , Audição , Mecanotransdução Celular , Mamíferos/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo
3.
Brain Behav Immun Health ; 34: 100697, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38020477

RESUMO

Children on the autism spectrum have been shown to have immune dysregulation that often correlates with behavioral deficits. The role of the post-natal environment in this dysregulation is an area of active investigation. We examined the association between plasma levels of polybrominated diphenyl ether (PBDE) and immune cell function in age-matched autistic children and non-autistic controls. Plasma from children on the autism spectrum (n = 38) and typically developing controls (TD; n = 60) were analyzed for 14 major PBDE congeners. Cytokine/chemokine production was measured in peripheral blood mononuclear cell (PBMC) supernatants with and without ex vivo BDE-49 exposure. Total plasma concentration (∑PBDE14) and individual congener levels were also correlated with T cell function. ∑PBDE14 did not differ between diagnostic groups but correlated with reduced immune function in children on the autism spectrum. In autistic children, IL-2 and IFN-γ production was reduced in association with several individual BDE congeners, especially BDE-49 (p = 0.001). Furthermore, when PBMCs were exposed ex vivo to BDE-49, cells from autistic children produced elevated levels of IL-6, TNF-α, IL-1ß, MIP-1α and MCP-1 (p < 0.05). Therefore, despite similar plasma levels of PBDE, these data suggest that PBMC function was differentially impacted in the context of several PBDE congeners in autistic children relative to TD children where increased body burden of PBDE significantly correlated with a suppressed immune response in autistic children but not TD controls. Further, acute ex vivo exposure of PBMCs to BDE-49 stimulates an elevated cytokine response in AU cases versus a depressed response in TD controls. These data suggest that exposure to the toxicant BDE-49 differentially impacts immune cell function in autistic children relative to TD children providing evidence for an underlying association between susceptibility to PBDE exposure and immune anomalies in children on the autism spectrum.

4.
J Biol Chem ; 299(8): 104992, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392848

RESUMO

Malignant hyperthermia susceptibility (MHS) is an autosomal dominant pharmacogenetic disorder that manifests as a hypermetabolic state when carriers are exposed to halogenated volatile anesthetics or depolarizing muscle relaxants. In animals, heat stress intolerance is also observed. MHS is linked to over 40 variants in RYR1 that are classified as pathogenic for diagnostic purposes. More recently, a few rare variants linked to the MHS phenotype have been reported in CACNA1S, which encodes the voltage-activated Ca2+ channel CaV1.1 that conformationally couples to RyR1 in skeletal muscle. Here, we describe a knock-in mouse line that expresses one of these putative variants, CaV1.1-R174W. Heterozygous (HET) and homozygous (HOM) CaV1.1-R174W mice survive to adulthood without overt phenotype but fail to trigger with fulminant malignant hyperthermia when exposed to halothane or moderate heat stress. All three genotypes (WT, HET, and HOM) express similar levels of CaV1.1 by quantitative PCR, Western blot, [3H]PN200-110 receptor binding and immobilization-resistant charge movement densities in flexor digitorum brevis fibers. Although HOM fibers have negligible CaV1.1 current amplitudes, HET fibers have similar amplitudes to WT, suggesting a preferential accumulation of the CaV1.1-WT protein at triad junctions in HET animals. Never-the-less both HET and HOM have slightly elevated resting free Ca2+ and Na+ measured with double barreled microelectrode in vastus lateralis that is disproportional to upregulation of transient receptor potential canonical (TRPC) 3 and TRPC6 in skeletal muscle. CaV1.1-R174W and upregulation of TRPC3/6 alone are insufficient to trigger fulminant malignant hyperthermia response to halothane and/or heat stress in HET and HOM mice.


Assuntos
Halotano , Resposta ao Choque Térmico , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Hipertermia Maligna , Animais , Camundongos , Cálcio/metabolismo , Halotano/farmacologia , Resposta ao Choque Térmico/genética , Hipertermia Maligna/genética , Hipertermia Maligna/metabolismo , Hipertermia Maligna/patologia , Músculo Esquelético/metabolismo , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética
5.
Res Sq ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37502846

RESUMO

The inner ear is the hub where hair cells transduce sound, gravity, and head acceleration stimuli carried by neural codes to the brain. Of all the senses, hearing and balance, which rely on mechanosensation, are the fastest sensory signals transmitted to the central nervous system. The mechanoelectrical transducer (MET) channel in hair cells is the entryway for the sound-balance-brain interface, but the channel's composition has eluded biologists due to its complexity. Here, we report that the mouse utilizes Piezo1 (Pz1) and Piezo2 (Pz2) isoforms as central components of the MET complex. The Pz channel subunits are expressed in hair-cell stereocilia, are co-localized and co-assembled, and are essential components of the MET complex in vitro and in situ, including integration with the transmembrane channel (Tmc1/2) protein. Mice expressing non-functional Pz1 and Pz2, but not functional Pz1 at the ROSA26 locus under the control of hair-cell promoters, have impaired auditory and vestibular traits that can only be explained if Pz channel multimers are integral to the MET complex. We affirm that Pz protein subunits constitute MET channels and that functional interactions with components of the MET complex yield current properties resembling hair-cell MET currents. Our results demonstrate Pz is a MET channel component central to interacting with MET complex proteins. Results account for the MET channel pore and complex.

6.
Toxicol Sci ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36882182

RESUMO

Acute exposure to high concentrations of hydrogen sulfide (H2S) leads to sudden death and, if survived, lingering neurological disorders. Clinical signs include seizures, loss of consciousness, and dyspnea. The proximate mechanisms underlying H2S-induced acute toxicity and death have not been clearly elucidated. We investigated electrocerebral, cardiac and respiratory activity during H2S exposure using electroencephalogram (EEG), electrocardiogram (EKG) and plethysmography. H2S suppressed electrocerebral activity and disrupted breathing. Cardiac activity was comparatively less affected. To test whether Ca2+ dysregulation contributes to H2S-induced EEG suppression, we developed an in vitro real-time rapid throughput assay measuring patterns of spontaneous synchronized Ca2+ oscillations in cultured primary cortical neuronal networks loaded with the indicator Fluo-4 using the fluorescent imaging plate reader (FLIPR-Tetra®). Sulfide >5 ppm dysregulated synchronous calcium oscillation (SCO) patterns in a dose-dependent manner. Inhibitors of NMDA and AMPA receptors magnified H2S-induced SCO suppression. Inhibitors of L-type voltage gated Ca2+ channels and transient receptor potential channels prevented H2S-induced SCO suppression. Inhibitors of T-type voltage gated Ca2+ channels, ryanodine receptors, and sodium channels had no measurable influence on H2S-induced SCO suppression. Exposures to > 5 ppm sulfide also suppressed neuronal electrical activity in primary cortical neurons measured by multi-electrode array (MEA), an effect alleviated by pretreatment with the nonselective transient receptor potential channel inhibitor, 2-APB. 2-APB also reduced primary cortical neuronal cell death from sulfide exposure. These results improve our understanding of the role of different Ca2+ channels in acute H2S-induced neurotoxicity and identify transient receptor potential channel modulators as novel structures with potential therapeutic benefits.

7.
Front Toxicol ; 4: 947795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278027

RESUMO

Although their production was banned in the United States in 1977, polychlorinated biphenyls (PCBs) continue to pose significant risks to the developing nervous system. Perinatal exposure to PCBs is associated with increased risk of neuropsychiatric disorders, perhaps due to altered patterns of dendritic arborization of central neurons. Non-dioxin-like (NDL) PCB congeners enhance dendritic arborization of developing mammalian neurons via sensitization of ryanodine receptors (RYR). Structure-activity relationships (SAR) of RYR sensitization by PCBs have been demonstrated using mammalian and rainbow trout (Oncorhynchus mykiss) tissue homogenates. The purpose of this study is to determine whether this SAR translates to developmental neurotoxicity (DNT) of PCBs in vivo, a question that has yet to be tested. To address this gap, we leveraged a zebrafish model to evaluate the developmental neurotoxicity potential of PCBs 28, 66, 84, 95, 138, and 153, congeners previously shown to have broadly different potencies towards sensitizing RYR. We first confirmed that these PCB congeners exhibited differing potency in sensitizing RYR in zebrafish muscle ranging from negligible (PCB 66) to moderate (PCB 153) to high (PCB 95) RYR activity. Next, enzymatically dechorionated embryos were statically exposed to varying concentrations (0.1-10 µM) of each PCB congener from 6 h post-fertilization to 5 days post-fertilization (dpf). Embryos were observed daily using stereomicroscopy to assess mortality and gross malformations and photomotor behavior was assessed in larval zebrafish at 3, 4, and 5 dpf. The body burden of each PCB was measured by gas chromatography. The key findings are: 1) None of these PCBs caused death or overt teratology at the concentrations tested; 2) A subset of these PCB congeners altered photomotor behavior in larval zebrafish and the SAR for PCB behavioral effects mirrored the SAR for RYR sensitization; and 3) Quantification of PCB levels in larval zebrafish ruled out the possibility that congener-specific effects on behavior were due to differential uptake of PCB congeners. Collectively, the findings from this study provide in vivo evidence in support of the hypothesis that RYR sensitization contributes to the DNT of PCBs.

8.
Ann Clin Transl Neurol ; 9(5): 600-609, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35324073

RESUMO

OBJECTIVE: Royal demolition explosive (RDX) can induce seizures in wildlife and humans following release into the environment or after voluntary consumption. During the Vietnam War, RDX intoxication was the most common cause of generalized seizures in US service personnel, and in some sections of the armed forces, eating of RDX has continued as "a dare" to this day. After its mechanism of action was long unknown, RDX was recently shown to be a GABAA receptor antagonist. We here determined the GABAA receptor subtype-selectivity of RDX and mapped its functional binding site. METHODS: We used whole-cell patch-clamp to determine the potency of RDX on 10 recombinantly expressed GABAA receptors and mapped the RDX binding site using a combination of Rosetta molecular modeling and site-directed mutagenesis. RESULTS: RDX was found to reversibly inhibit the α1ß2γ2 GABAA receptor with an IC50 of 23 µmol/L (95% CI 15.1-33.3 µmol/L), whereas α4 and α6 containing GABAA receptor combinations were 4-10-fold less sensitive. RDX is binding to the noncompetitive antagonist (NCA) site in the pore. In a molecular model based on the cryo-EM structure of the resting state of the α1ß2γ2 receptor, RDX forms two hydrogen bonds with the threonines at the T6' ring and makes hydrophobic interactions with the valine and alanine in 2' position of the α1 or ß2 subunits. INTERPRETATION: Our findings characterize the mechanism of action of RDX at the atomistic level and suggest that RDX-induced seizures should be susceptible to treatment with GABAA modulating drugs such as benzodiazepines, barbiturates, propofol, or neurosteroids.


Assuntos
Receptores de GABA-A , Convulsões , Humanos , Plásticos/metabolismo , Convulsões/induzido quimicamente , Triazinas , Ácido gama-Aminobutírico/metabolismo
9.
Front Neurosci ; 15: 766826, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938155

RESUMO

Polychlorinated biphenyls (PCBs) are putative environmental risks for neurodevelopmental disorders. Here, we tested two hypotheses: (1) developmental exposure to a human-relevant PCB mixture causes behavioral phenotypes relevant to neurodevelopmental disorders; and (2) expression of human mutations that dysregulate neuronal Ca2+ homeostasis influence sensitivity to behavioral effects of developmental PCB exposures. To test these hypotheses, we used mice that expressed a gain-of-function mutation (T4826I) in ryanodine receptor 1 (RYR1), the X-linked fragile X mental retardation 1 (FMR1) CGG repeat expansion or both mutations (double mutant; DM). Transgenic mice and wildtype (WT) mice were exposed to the MARBLES PCB mix at 0, 0.1, 1, and 6 mg/kg/day in the maternal diet throughout gestation and lactation. The MARBLES PCB mix simulates the relative proportions of the 12 most abundant PCB congeners found in the serum of pregnant women at increased risk for having a child with a neurodevelopmental disorder. We assessed ultrasonic vocalizations at postnatal day 7 (P7), spontaneous repetitive behaviors at P25-P30, and sociability at P27-P32. Developmental PCB exposure reduced ultrasonic vocalizations in WT litters in all dose groups, but had no effect on ultrasonic vocalizations in transgenic litters. Developmental PCB exposure significantly increased self-grooming and decreased sociability in WT males in the 0.1 mg/kg dose group, but had no effect on WT females in any dose group. Genotype alone influenced ultrasonic vocalizations, self-grooming and to a lesser extent sociability. Genotype alone also influenced effects of PCBs on sociability. PCB levels in the brain tissue of pups increased in a dose-dependent manner, but within any dose group did not differ between genotypes. In summary, developmental PCB exposure phenocopied social behavior phenotypes observed in mice expressing human mutations that modify intracellular Ca2+ dynamics, and expression of these mutations alleviated PCB effects on ultrasonic vocalizations and repetitive behavior, and modified the dose-response relationships and sex-dependent effects of PCB effects on social behavior. These findings suggest that: (1) developmental PCB exposure causes behavioral phenotypes that vary by sex and genotype; and (2) sex-specific responses to environmental factors may contribute to sex biases in the prevalence and/or severity of neurodevelopmental disorders.

10.
Front Neurosci ; 15: 766802, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34924936

RESUMO

While many neurodevelopmental disorders (NDDs) are thought to result from interactions between environmental and genetic risk factors, the identification of specific gene-environment interactions that influence NDD risk remains a critical data gap. We tested the hypothesis that polychlorinated biphenyls (PCBs) interact with human mutations that alter the fidelity of neuronal Ca2+ signaling to confer NDD risk. To test this, we used three transgenic mouse lines that expressed human mutations known to alter Ca2+ signals in neurons: (1) gain-of-function mutation in ryanodine receptor-1 (T4826I-RYR1); (2) CGG-repeat expansion in the 5' non-coding portion of the fragile X mental retardation gene 1 (FMR1); and (3) a double mutant (DM) that expressed both mutations. Transgenic and wildtype (WT) mice were exposed throughout gestation and lactation to the MARBLES PCB mix at 0.1, 1, or 6 mg/kg in the maternal diet. The MARBLES mix simulates the relative proportions of the twelve most abundant PCB congeners found in serum from pregnant women at increased risk for having a child with an NDD. Using Golgi staining, the effect of developmental PCB exposure on dendritic arborization of pyramidal neurons in the CA1 hippocampus and somatosensory cortex of male and female WT mice was compared to pyramidal neurons from transgenic mice. A multilevel linear mixed-effects model identified a main effect of dose driven by increased dendritic arborization of cortical neurons in the 1 mg/kg PCB dose group. Subsequent analyses with genotypes indicated that the MARBLES PCB mixture had no effect on the dendritic arborization of hippocampal neurons in WT mice of either sex, but significantly increased dendritic arborization of cortical neurons of WT males in the 6 mg/kg PCB dose group. Transgene expression increased sensitivity to the impact of developmental PCB exposure on dendritic arborization in a sex-, and brain region-dependent manner. In conclusion, developmental exposure to PCBs present in the gestational environment of at-risk humans interfered with normal dendritic morphogenesis in the developing mouse brain in a sex-, genotype- and brain region-dependent manner. Overall, these observations provide proof-of-principle evidence that PCBs interact with heritable mutations to modulate a neurodevelopmental outcome of relevance to NDDs.

11.
Environ Sci Technol ; 55(23): 16023-16033, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34788016

RESUMO

Bromopyrroles (BrPyr) are synthesized naturally by marine sponge symbionts and produced anthropogenically as byproducts of wastewater treatment. BrPyr interact with ryanodine receptors (RYRs) and sarco/endoplasmic reticulum (SR/ER) Ca2+-ATPase (SERCA). Influences of BrPyr on the neuronal network activity remain uncharted. BrPyr analogues with differing spectra of RYR/SERCA activities were tested using RYR-null or RYR1-expressing HEK293 and murine cortical neuronal/glial cocultures (NGCs) loaded with Fluo-4 to elucidate their mechanisms altering Ca2+ dynamics. The NGC electrical spike activity (ESA) was measured from NGCs plated on multielectrode arrays. Nanomolar tetrabromopyrrole (TBP, 1) potentiated caffeine-triggered Ca2+ release independent of extracellular [Ca2+] in RYR1-HEK293, whereas higher concentrations produce slow and sustained rise in cytoplasmic [Ca2+] independent of RYR1 expression. TBP, 2,3,5-tribromopyrrole (2), pyrrole (3), 2,3,4-tribromopyrrole (4), and ethyl 4-bromopyrrole-2-carboxylate (5) added acutely to NGC showed differential potency; rank order TBP (IC50 ≈ 220 nM) > 2 ≫ 5, whereas 3 and 4 were inactive at 10 µM. TBP >2 µM elicited sustained elevation of cytoplasmic [Ca2+] and loss of neuronal viability. TBP did not alter network ESA. BrPyr from marine and anthropogenic sources are ecological signaling molecules and emerging anthropogenic pollutants of concern to environmental and human health that potently alter ER Ca2+ dynamics and warrant further investigation in vivo.


Assuntos
Adenosina Trifosfatases , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Camundongos
13.
Br J Pharmacol ; 178(17): 3448-3462, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837959

RESUMO

BACKGROUND AND PURPOSE: Cocamide monoethanolamide (CMEA) is commonly used as a surfactant-foam booster in cosmetic formulations. Upon contact with the eye or other sensitive skin areas, CMEA elicits stinging and lasting irritation. We hypothesized a specific molecular interaction with TRPV1 channels by which CMEA caused eye irritation. EXPERIMENTAL APPROACH: Eye irritancy was evaluated using eye-wiping tests in rabbits and mice. Intracellular Ca2+ concentrations and action potentials were measured using Ca2+ imaging and current clamp respectively. Voltage clamp, site-direct mutagenesis and molecular modelling were used to identify binding pockets for CMEA on TRPV1 channels. KEY RESULTS: CMEA-induced eye irritation is ameliorated by selective ablation of TRPV1 channels.Rodents exhibit much stronger responses to CMEA than rabbits. In trigeminal ganglion neurons, CMEA induced Ca2+ influx and neuronal excitability, effects mitigated by a TRPV1 channel inhibition and absent in TRPV1 knockout neurons. In HEK-293 cells expressing TRPV1 channels, CMEA increased whole-cell currents by increasing channel open probability (EC50 = 10.2 µM), without affecting TRPV2, TRPV3, TRPV4, and TRPA1 channel activities. Lauric acid monoethanolamide (LAMEA), the most abundant constituent of CMEA, was the most efficacious and potent TRPV1 channel activator, binding to the capsaicin-binding pocket of the channel. The T550I mutants of rabbit and human TRPV1 channels exhibit much lower sensitivity to LAMEA. CONCLUSIONS AND IMPLICATION: CMEA directly activates TRPV1 channels to produce eye irritation. Rabbits, the standard animal used for eye irritancy tests are poor models for evaluating human eye irritants structurally related to CMEA. Our study identifies potential alternatives to CMEA as non-irritating surfactants.


Assuntos
Nociceptores , Tensoativos , Animais , Cálcio/metabolismo , Capsaicina , Células HEK293 , Humanos , Camundongos , Nociceptores/metabolismo , Coelhos , Canal de Cátion TRPA1 , Canais de Cátion TRPV/genética
14.
Toxicol Sci ; 180(2): 325-341, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33483729

RESUMO

Tetramethylenedisulfotetramine (tetramine or TETS), a potent convulsant, triggers abnormal electrical spike activity (ESA) and synchronous Ca2+ oscillation (SCO) patterns in cultured neuronal networks by blocking gamma-aminobutyric acid (GABAA) receptors. Murine hippocampal neuronal/glial cocultures develop extensive dendritic connectivity between glutamatergic and GABAergic inputs and display two distinct SCO patterns when imaged with the Ca2+ indicator Fluo-4: Low amplitude SCO events (LASE) and High amplitude SCO events (HASE) that are dependent on TTX-sensitive network electrical spike activity (ESA). Acute TETS (3.0 µM) increased overall network SCO amplitude and decreased SCO frequency by stabilizing HASE and suppressing LASE while increasing ESA. In multielectrode arrays, TETS also increased burst frequency and synchronicity. In the presence of TETS (3.0 µM), the clinically used anticonvulsive perampanel (0.1-3.0 µM), a noncompetitive AMPAR antagonist, suppressed all SCO activity, whereas the GABAA receptor potentiator midazolam (1.0-30 µM), the current standard of care, reciprocally suppressed HASE and stabilized LASE. The neuroactive steroid (NAS) allopregnanolone (0.1-3.0 µM) normalized TETS-triggered patterns by selectively suppressing HASE and increasing LASE, a pharmacological pattern distinct from its epimeric form eltanolone, ganaxolone, alphaxolone, and XJ-42, which significantly potentiated TETS-triggered HASE in a biphasic manner. Cortisol failed to mitigate TETS-triggered patterns and at >1 µM augmented them. Combinations of allopregnanolone and midazolam were significantly more effective at normalizing TETS-triggered SCO patterns, ESA patterns, and more potently enhanced GABA-activated Cl- current, than either drug alone.


Assuntos
Neuroesteroides , Animais , Hidrocarbonetos Aromáticos com Pontes , Hipocampo/metabolismo , Camundongos , Midazolam/farmacologia , Nitrilas , Piridonas , Receptores de GABA-A/metabolismo , Relação Estrutura-Atividade
15.
Toxicol Sci ; 178(1): 159-172, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32894766

RESUMO

Dichlorodiphenyltrichloroethane (DDT) and its metabolite dichlorodiphenyl-dichloroethylene (DDE) are ubiquitously found in the environment and linked to cardiovascular diseases-with a majority of the work focused on hypertension. Studies investigating whether DDx can interact with molecular targets on cardiac tissue to directly affect cardiac function are lacking. Therefore, we investigated whether o,p'-DDT, p,p'-DDT, o,p'-DDE, or p,p'-DDE (DDx, collectively) can directly alter the function of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) by assessing their effect(s) on hiPSC-CMs Ca2+ dynamics. DDx (0.1-10 µM) affected hiPSC-CMs synchronous Ca2+ oscillation frequency in a concentration-dependent manner, with p,p'-DDT and p,p'-DDE also decreasing Ca2+ stores. HEK-RyR2 cells cultured under antibiotic selection to induce expression of wild-type mouse ryanodine receptor type 2 (RyR2) are used to further investigate whether DDx alters hiPSC-CMs Ca2+ dynamics through engagement with RyR2, a protein critical for cardiac muscle excitation-contraction coupling (ECC). Acute treatment with 10 µM DDx failed to induce Ca2+ release in HEK293-RyR2, whereas pretreatment with DDx (0.1-10 µM) for 12- or 24-h significantly decreased sarcoplasmic reticulum Ca2+ stores in HEK-RyR2 cells challenged with caffeine (1 mM), an RyR agonist. [3H]ryanodine-binding analysis using murine cardiac RyR2 homogenates further confirmed that all DDx isomers (10 µM) can directly engage with RyR2 to favor an open (leaky) confirmation, whereas only the DDT isomers (10 µM) modestly (≤10%) inhibited SERCA2a activity. The data demonstrate that DDx increases heart rate and depletes Ca2+ stores in human cardiomyocytes through a mechanism that impairs RyR2 function and Ca2+ dynamics. IMPACT STATEMENT: DDT/DDE interactions with RyR2 alter cardiomyocyte Ca2+ dynamics that may contribute to adverse cardiovascular outcomes associated with exposures.


Assuntos
Cardiotoxicidade , DDT/toxicidade , Diclorodifenil Dicloroetileno/toxicidade , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL
16.
Mol Pharmacol ; 98(4): 351-363, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32764093

RESUMO

Ryanodine receptor (RYR) mutations confer stress-triggered malignant hyperthermia (MH) susceptibility. Dietary caffeine (CAF) is the most commonly consumed psychoactive compound by humans. CAF-triggered Ca2+ release and its influences on skeletal muscle contractility are widely used as experimental tools to study RYR function/dysfunction and diagnose MH susceptibility. We hypothesize that dietary CAF achieving blood levels measured in human plasma exacerbates the penetrance of RYR1 MH susceptibility mutations triggered by gaseous anesthetic, affecting both central and peripheral adverse responses. Heterozygous R163C-RYR1 (HET) MH susceptible mice are used to investigate the influences of dietary CAF on both peripheral and central responses before and after induction of halothane (HAL) maintenance anesthesia under experimental conditions that maintain normal core body temperature. HET mice receiving CAF (plasma CAF 893 ng/ml) have significantly shorter times to respiratory arrest compared with wild type, without altering blood chemistry or displaying hyperthermia or muscle rigor. Intraperitoneal bolus dantrolene before HAL prolongs time to respiratory arrest. A pilot electrographic study using subcutaneous electrodes reveals that dietary CAF does not alter baseline electroencephalogram (EEG) total power, but significantly shortens delay to isoelectric EEG, which precedes respiratory and cardiac arrest. CAF ± HAL are studied on RYR1 single-channel currents and HET myotubes to define molecular mechanisms of gene-by-environment synergism. Strong pharmacological synergism between CAF and HAL is demonstrated in both single-channel and myotube preparations. Central and peripheral nervous systems mediate adverse responses to HAL in a HET model of MH susceptibility exposed to dietary CAF, a modifiable lifestyle factor that may mitigate risks of acute and chronic diseases associated with RYR1 mutations. SIGNIFICANCE STATEMENT: Dietary caffeine at a human-relevant dose synergizes adverse peripheral and central responses to anesthesia in malignant hyperthermia susceptible mice. Synergism of these drugs can be attributed to their actions at ryanodine receptors.


Assuntos
Cafeína/efeitos adversos , Dantroleno/efeitos adversos , Halotano/efeitos adversos , Hipertermia Maligna/fisiopatologia , Fibras Musculares Esqueléticas/fisiologia , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Cafeína/farmacologia , Dantroleno/administração & dosagem , Modelos Animais de Doenças , Sinergismo Farmacológico , Eletroencefalografia/instrumentação , Feminino , Halotano/administração & dosagem , Heterozigoto , Humanos , Injeções Intraperitoneais , Masculino , Hipertermia Maligna/genética , Camundongos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
17.
FASEB J ; 34(6): 8721-8733, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32367593

RESUMO

Malignant hyperthermia (MH) is characterized by induction of skeletal muscle hyperthermia in response to a dysregulated increase in myoplasmic calcium. Although altered energetics play a central role in MH, MH-susceptible humans and mouse models are often described as having no phenotype until exposure to a triggering agent. The purpose of this study was to determine the influence of the R163C ryanodine receptor 1 mutation, a common MH mutation in humans, on energy expenditure, and voluntary wheel running in mice. Energy expenditure was measured by indirect respiration calorimetry in wild-type (WT) and heterozygous R163C (HET) mice over a range of ambient temperatures. Energy expenditure adjusted for body weight or lean mass was increased (P < .05) in male, but not female, HET mice housed at 22°C or when housed at 28°C with a running wheel. In female mice, voluntary wheel running was decreased (P < .05) in the HET vs WT animals when analyzed across ambient temperatures. The thermoneutral zone was also widened in both male and female HET mice. The results of the study show that the R163C mutations alters energetics even at temperatures that do not typically induce MH.


Assuntos
Metabolismo Energético/fisiologia , Hipertermia/patologia , Hipertermia Maligna/patologia , Atividade Motora/fisiologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Feminino , Heterozigoto , Hipertermia/metabolismo , Masculino , Hipertermia Maligna/metabolismo , Potenciais da Membrana/fisiologia , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
18.
Front Mol Biosci ; 7: 600840, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585555

RESUMO

Background: Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder associated with premutation CGG-repeat expansions (55-200 repeats) in the 5' non-coding portion of the fragile X mental retardation 1 (FMR1) gene. Core features of FXTAS include progressive tremor/ataxia, cognitive decline, variable brain volume loss, and white matter disease. The principal histopathological feature of FXTAS is the presence of central nervous system (CNS) and non-CNS intranuclear inclusions. Objective: To further elucidate the molecular underpinnings of FXTAS through the proteomic characterization of human FXTAS cortexes. Results: Proteomic analysis of FXTAS brain cortical tissue (n = 8) identified minor differences in protein abundance compared to control brains (n = 6). Significant differences in FXTAS relative to control brain predominantly involved decreased abundance of proteins, with the greatest decreases observed for tenascin-C (TNC), cluster of differentiation 38 (CD38), and phosphoserine aminotransferase 1 (PSAT1); proteins typically increased in other neurodegenerative diseases. Proteins with the greatest increased abundance include potentially novel neurodegeneration-related proteins and small ubiquitin-like modifier 1/2 (SUMO1/2). The FMRpolyG peptide, proposed in models of FXTAS pathogenesis but only identified in trace amounts in the earlier study of FXTAS inclusions, was not identified in any of the FXTAS or control brains in the current study. Discussion: The observed proteomic shifts, while generally relatively modest, do show a bias toward decreased protein abundance with FXTAS. Such shifts in protein abundance also suggest altered RNA binding as well as loss of cell-cell adhesion/structural integrity. Unlike other neurodegenerative diseases, the proteome of end-stage FXTAS does not suggest a strong inflammation-mediated degenerative response.

19.
Acta Neuropathol Commun ; 7(1): 143, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481131

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder associated with a premutation repeat expansion (55-200 CGG repeats) in the 5' noncoding region of the FMR1 gene. Solitary intranuclear inclusions within FXTAS neurons and astrocytes constitute a hallmark of the disorder, yet our understanding of how and why these bodies form is limited. Here, we have discovered that FXTAS inclusions emit a distinct autofluorescence spectrum, which forms the basis of a novel, unbiased method for isolating FXTAS inclusions by preparative fluorescence-activated cell sorting (FACS). Using a combination of autofluorescence-based FACS and liquid chromatography/tandem mass spectrometry (LC-MS/MS)-based proteomics, we have identified more than two hundred proteins that are enriched within the inclusions relative to FXTAS whole nuclei. Whereas no single protein species dominates inclusion composition, highly enriched levels of conjugated small ubiquitin-related modifier 2 (SUMO 2) protein and p62/sequestosome-1 (p62/SQSTM1) protein were found within the inclusions. Many additional proteins involved with RNA binding, protein turnover, and DNA damage repair were enriched within inclusions relative to total nuclear protein. The current analysis has also allowed the first direct detection, through peptide sequencing, of endogenous FMRpolyG peptide, the product of repeat-associated non-ATG (RAN) translation of the FMR1 mRNA. However, this peptide was found only at extremely low levels and not within whole FXTAS nuclear preparations, raising the question whether endogenous RAN products exist at quantities sufficient to contribute to FXTAS pathogenesis. The abundance of the inclusion-associated ubiquitin- and SUMO-based modifiers supports a model for inclusion formation as the result of increased protein loads and elevated oxidative stress leading to maladaptive autophagy. These results highlight the need to further investigate FXTAS pathogenesis in the context of endogenous systems.


Assuntos
Ataxia/genética , Ataxia/patologia , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Lobo Frontal/patologia , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/patologia , Tremor/genética , Tremor/patologia , Sequência de Aminoácidos , Ataxia/metabolismo , Feminino , Citometria de Fluxo/métodos , Síndrome do Cromossomo X Frágil/metabolismo , Lobo Frontal/metabolismo , Humanos , Corpos de Inclusão Intranuclear/metabolismo , Masculino , Proteômica/métodos , Tremor/metabolismo
20.
Environ Pollut ; 253: 708-721, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31336350

RESUMO

The gut microbiota is important for maintaining homeostasis of the host. Gut microbes represent the initial site for toxicant processing following dietary exposures to environmental contaminants. The diet is the primary route of exposure to polychlorinated biphenyls (PCBs), which are absorbed via the gut, and subsequently interfere with neurodevelopment and behavior. Developmental exposures to PCBs have been linked to increased risk of neurodevelopmental disorders (NDD), including autism spectrum disorder (ASD), which are also associated with a high prevalence of gastrointestinal (GI) distress and intestinal dysbiosis. We hypothesized that developmental PCB exposure impacts colonization of the gut microbiota, resulting in GI pathophysiology, in a genetically susceptible host. Mouse dams expressing two heritable human mutations (double mutants [DM]) that result in abnormal Ca2+ dynamics and produce behavioral deficits (gain of function mutation in the ryanodine receptor 1 [T4826I-RYR1] and a human CGG repeat expansion [170-200 CGG repeats] in the fragile X mental retardation gene 1 [FMR1 premutation]). DM and congenic wild type (WT) controls were exposed to PCBs (0-6 mg/kg/d) in the diet starting 2 weeks before gestation and continuing through postnatal day 21 (P21). Intestinal physiology (Ussing chambers), inflammation (qPCR) and gut microbiome (16S sequencing) studies were performed in offspring mice (P28-P30). Developmental exposure to PCBs in the maternal diet caused significant mucosal barrier defects in ileum and colon (increased secretory state and tight junction permeability) of juvenile DM mice. Furthermore, PCB exposure increased the intestinal inflammatory profile (Il6, Il1ß, and Il22), and resulted in dysbiosis of the gut microbiota, including altered ß-diversity, in juvenile DM mice developmentally exposed to 1 mg/kg/d PCBs when compared to WT controls. Collectively, these findings demonstrate a novel interaction between PCB exposure and the gut microbiota in a genetically susceptible host that provide novel insight into environmental risk factors for neurodevelopmental disorders.


Assuntos
Poluentes Ambientais/toxicidade , Exposição Materna , Bifenilos Policlorados/toxicidade , Animais , Transtorno do Espectro Autista , Dieta , Exposição Dietética , Disbiose , Feminino , Proteína do X Frágil da Deficiência Intelectual , Microbioma Gastrointestinal , Homeostase , Humanos , Inflamação , Intestinos , Camundongos , Junções Íntimas , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA