Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Fish Physiol Biochem ; 50(2): 477-494, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38112904

RESUMO

Climate change has been one of the most discussed topics in the world. Global warming is characterized by an increase in global temperature, also in aquatic environments. The increased temperature can affect aquatic organisms with lethal and sublethal effects. Thus, it is necessary to understand how different species respond to temperature. This study aimed to evaluate how the Neotropical catfish species Rhamdia quelen responds to temperature increases. The fish were exposed to temperatures of 25 °C (control) and 30 °C after gradual temperature increase for 7 days. After 96 h in each temperature, the fish were anesthetized, blood was collected, and after euthanasia, brain, liver, posterior kidney, gills, muscle, and gonads were collected. The gonads were used for sexing, while other tissues were used for the hematological, biochemical, genotoxic, and histopathological biomarkers analysis. Hepatic proteomic analysis with a focus on energy production was also carried out. Blood parameter changes in both sexes, including an increase in glucose in males, leukopenia in females, and genotoxicity in both sexes. Hepatic proteins related to energy production were altered in both sexes, but mainly in males. Others biomarker alterations, such as histopathological, were not observed in other tissues; however, the antioxidant system was affected differently between sexes. These showed that R. quelen juveniles, at temperatures higher than its optimum temperature such as 30 °C, has several sublethal changes, such as hematological alterations, antioxidant system activation, and energetic metabolism alteration, especially in males. Thus, short-term temperature rise can affect females and males of R. quelen differently.


Assuntos
Peixes-Gato , Poluentes Químicos da Água , Masculino , Feminino , Animais , Peixes-Gato/fisiologia , Temperatura , Antioxidantes/metabolismo , Biodiversidade , Proteômica , Eutanásia Animal , Fígado/metabolismo
2.
Int J Biol Macromol ; 211: 524-534, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35577199

RESUMO

Sulfated polysaccharides (SPs) from seaweeds are potential bioactive natural compounds, but their DNA protective activity is poorly explored. This article aimed to evaluate the genotoxic/antigenotoxic potentials of a sulfated heterofucan from brown seaweed Spatoglossum schröederi (Fucan A - FA) and a sulfated galactan from green seaweed Codium isthomocladum (3G4S) using in vitro Comet assay (alkaline and oxidative versions) with HepG2 cells. The antioxidant activity of these SPs was evaluated by total antioxidant capacity, radical scavenging, metal chelating, and antioxidant enzyme activity assays. Both SPs were not genotoxic. FA and 3G4S displayed strong antigenotoxic activity against oxidizing chemical (H2O2) but not against alkylating chemical (MMS). The DNA damage reduction after a pre-treatment of 72 h with these SPs was 81.42% to FA and 81.38% to 3G4S. In simultaneous exposure to FA or 3G4S with H2O2, HepG2 cells presented 48.04% and 55.41% of DNA damage reduction compared with the control, respectively. The antigenotoxicity of these SPs relates to direct antioxidant activity by blockage of the initiation step of the oxidative chain reaction. Therefore, we conclude that FA and 3G4S could be explored as functional natural compounds with antigenotoxic activity due to their great protection against oxidative DNA damage.


Assuntos
Alga Marinha , Sulfatos , Antioxidantes/química , Antioxidantes/farmacologia , Dano ao DNA , Peróxido de Hidrogênio , Oxirredução , Polissacarídeos/química , Polissacarídeos/farmacologia , Alga Marinha/química , Sulfatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA