RESUMO
MAIN RESULTS: Technology transfer can take place at large events, as long as safety protocols are strictly enforced. It is important to disseminate, at these events, the concepts of the Responsible Research and Innovation (RRI). Implications for services: Face-to-face training course is fundamental for training public health professionals. Technology transfer between research institutions and health services results in updating and improving health system performance. PERSPECTIVES: Based on the success of the reported technology transfer, a new module will be incorporated into the next edition of VEME (Panama 2022), entitled Virus Evolution to Public Health Policy Makers. The objective of this report was to describe the first face-to-face course aimed at training public health professionals in performing real-time genomic surveillance during the pandemic period. Experience report on a theoretical-practical course focusing on genomic research and surveillance, including mobile sequencing technologies, bioinformatics, phylogenetics and epidemiological modeling. There were 162 participants in the event and it was the first major face-to-face training course conducted during the COVID-19 epidemic in Brazil. No cases of SARS-CoV-2 infection was detected among the participants at the end of the event, suggesting the safety and effectiveness of all safety measures adopted. The results of this experience suggest that it is possible to conduct professional training safely during pandemics, as long as all safety protocols are followed.
Assuntos
COVID-19 , Educação Profissional em Saúde Pública , Transferência de Tecnologia , Humanos , Brasil/epidemiologia , COVID-19/epidemiologia , Pandemias , SARS-CoV-2 , Educação Profissional em Saúde Pública/métodosRESUMO
O relato descreveu o primeiro curso presencial visando capacitar profissionais de saúde pública na realização de vigilância genômica em tempo real, durante períodos pandêmicos. Relato de experiência sobre um curso teórico-prático com foco em pesquisa e vigilância genômica, incluindo tecnologias de sequenciamento móvel, bioinformática, filogenética e modelagem epidemiológica. O evento contou com 162 participantes e foi o primeiro grande treinamento presencial realizado durante a epidemia de covid-19 no Brasil. Não foi detectada infecção pelo SARS-CoV-2 ao final do evento em nenhum participante, sugerindo a segurança e efetividade de todas as medidas de segurança adotadas. Os resultados do evento sugerem que é possível executar capacitação profissional com segurança durante pandemias, desde que seguidos todos os protocolos de segurança.
The objective of this report was to describe the first face-to-face course aimed at training public health professionals in performing real-time genomic surveillance during the pandemic period. Experience report on a theoretical-practical course focusing on genomic research and surveillance, including mobile sequencing technologies, bioinformatics, phylogenetics and epidemiological modeling. There were 162 participants in the event and it was the first major face-to-face training course conducted during the COVID-19 epidemic in Brazil. No cases of SARS-CoV-2 infection was detected among the participants at the end of the event, suggesting the safety and effectiveness of all safety measures adopted. The results of this experience suggest that it is possible to conduct professional training safely during pandemics, as long as all safety protocols are followed.
Este estudio tuvo como objetivo describir el primer curso presencial para capacitar a los profesionales de la salud pública para llevar a cabo la vigilancia genómica en tiempo real durante los períodos de pandemia. Este es un informe de experiencia en un curso teórico-práctico centrado en la investigación y vigilancia genómica, que incluye secuenciación móvil, bioinformática, filogenética y tecnologías de modelado epidemiológico. Este evento contó con la asistencia de 162 participantes y fue la primera gran capacitación presencial realizada durante la epidemia de COVID-19 en Brasil. No se detectó infección por SARS-CoV-2 al final del evento en ningún participante, lo que sugiere la seguridad y efectividad de todas las medidas de seguridad adoptadas. Por lo tanto, los resultados del evento sugieren que es posible realizar entrenamientos profesionales de manera segura durante pandemias, siempre y cuando se sigan todos los protocolos de seguridad.
Assuntos
Humanos , Masculino , Feminino , Transferência de Tecnologia , Biologia Computacional/educação , Capacitação de Recursos Humanos em Saúde , Capacitação Profissional , COVID-19/epidemiologia , Brasil/epidemiologia , Saúde Pública , Pessoal de Saúde/educação , Genômica/educação , Epidemias , SARS-CoV-2/isolamento & purificação , COVID-19/genéticaRESUMO
Brazil accounted for a total number of 1,276,194 reported cases of chikungunya fever between 2014 and 2022. Additionally, since 2015, the country has experienced an increasing death toll, in which the Northeast and Southeast regions appear to report the worst scenarios. Although the CHIKV transmission dynamics have been studied in many parts of the country since its introduction in 2014, little is still known about chikungunya virus (CHIKV) transmission and genetic diversity in the state of Minas Gerais, located in southeast Brazil. Moreover, no studies have been published characterizing CHIKV genomic surveillance in this state. Thus, to retrospectively explore the CHIKV epidemic in Minas Gerais, we generated 40 genomes from clinical samples using Nanopore sequencing. Phylogenetic analysis indicated that multiple introductions of CHIKV occurred, likely from the northeastern Brazilian states, with the most recent common ancestral strain dating to early March 2016, which is in agreement with local epidemiological reports. Additionally, epidemiological data reveals a decline in the number of reported cases from 2017 to 2021, indicating that population immunity or changes in vector activity may have contributed to the decreasing waves of CHIKV infection. Together, our results shed light on the dispersion dynamics of CHIKV and show that infections decreased from March 2017 to January 2021 despite multiple introductions into Minas Gerais State. In conclusion, our study highlights the importance of combining genomic and epidemiological data in order to assist public health laboratories in monitoring and understanding the patterns and diversity of mosquito-borne viral epidemics. IMPORTANCE Arbovirus infections in Brazil, including chikungunya, dengue, yellow fever, and Zika, result in considerable morbidity and mortality and are pressing public health concerns. However, our understanding of these outbreaks is hampered by the limited availability of genomic data. In this study, we combine epidemiological analysis and portable genome sequencing to retrospectively describe the CHIKV epidemic in Minas Gerais between 2017 and 2021. Our results indicate that the East/Central/South African (ECSA) CHIKV lineage was introduced into Minas Gerais by three distinct events, likely from the North and Northeast regions of Brazil. Our study provides an understanding of how CHIKV initiates transmission in the region and illustrates that genomics in the field can augment traditional approaches to infectious disease surveillance and control.
Assuntos
Febre de Chikungunya , Vírus Chikungunya , Infecção por Zika virus , Zika virus , Animais , Humanos , Febre de Chikungunya/epidemiologia , Brasil/epidemiologia , Estudos Retrospectivos , Filogenia , Vírus Chikungunya/genética , GenômicaRESUMO
During these past years, several studies have provided serological evidence regarding the circulation of West Nile virus (WNV) in Brazil. Despite some reports, much is still unknown regarding the genomic diversity and transmission dynamics of this virus in the country. Recently, genomic monitoring activities in horses revealed the circulation of WNV in several Brazilian regions. These findings on the paucity of genomic data reinforce the need for prompt investigation of WNV infection in horses, which may precede human cases of encephalitis in Brazil. Thus, in this study, we retrospectively screened 54 suspicious WNV samples collected between 2017 and 2020 from the spinal cord and brain of horses with encephalitis and generated three new WNV genomes from the Ceará and Bahia states, located in the northeastern region of Brazil. The Bayesian reconstruction revealed that at least two independent introduction events occurred in Brazil. The first introduction event appears to be likely related to the North American outbreak, and was estimated to have occurred in March 2013.The second introduction event appears to have occurred in September 2017 and appears to be likely related to the South American outbreak. Together, our results reinforce the importance of increasing the priority of WNV genomic monitoring in equines with encephalitis in order to track the dispersion of this emerging pathogen through the country.
Assuntos
Doenças dos Cavalos , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Anticorpos Antivirais , Teorema de Bayes , Brasil/epidemiologia , Doenças dos Cavalos/epidemiologia , Cavalos , Humanos , Estudos Retrospectivos , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/genéticaRESUMO
We used nanopore sequencing and phylogenetic analyses to identify a cosmopolitan genotype of dengue virus serotype 2 that was isolated from a 56-year-old male patient from the state of Goiás in Brazil. The emergence of a cosmopolitan genotype in Brazil will require risk assessment and surveillance to reduce epidemic potential.
Assuntos
Vírus da Dengue , Dengue , Brasil/epidemiologia , Dengue/epidemiologia , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , SorogrupoRESUMO
Since the introduction of the Zika virus (ZIKV) into Brazil in 2015, its transmission dynamics have been intensively studied in many parts of the country, although much is still unknown about its circulation in the midwestern states. Here, using nanopore technology, we obtained 23 novel partial and near-complete ZIKV genomes from the state of Goiás, located in the Midwest of Brazil. Genomic, phylogenetic, and epidemiological approaches were used to retrospectively explore the spatiotemporal evolution of the ZIKV-Asian genotype in this region. As a likely consequence of a gradual accumulation of herd immunity, epidemiological data revealed a decline in the number of reported cases over 2018 to 2021. Phylogenetic reconstructions revealed that multiple independent introductions of the Asian lineage have occurred in Goiás over time and revealed a complex transmission dynamic between epidemic seasons. Together, our results highlight the utility of genomic, epidemiological, and evolutionary methods to understand mosquito-borne epidemics. IMPORTANCE Despite the considerable morbidity and mortality of arboviral infections in Brazil, such as Zika, chikungunya, dengue fever, and yellow fever, our understanding of these outbreaks is hampered by the limited availability of genomic data to track and control the epidemic. In this study, we provide a retrospective reconstruction of the Zika virus transmission dynamics in the state of Goiás by analyzing genomic data from areas in Midwest Brazil not covered by other previous studies. Our study provides an understanding of how ZIKV initiates transmission in this region and reveals a complex transmission dynamic between epidemic seasons. Together, our results highlight the utility of genomic, epidemiological, and evolutionary methods to understand mosquito-borne epidemics, revealing how this toolkit can be used to help policymakers prioritize areas to be targeted, especially in the context of finite public health resources.
Assuntos
Infecção por Zika virus , Zika virus , Animais , Brasil/epidemiologia , Filogenia , Estudos Retrospectivos , Zika virus/genética , Infecção por Zika virus/epidemiologiaRESUMO
The high numbers of COVID-19 cases and deaths in Brazil have made Latin America an epicentre of the pandemic. SARS-CoV-2 established sustained transmission in Brazil early in the pandemic, but important gaps remain in our understanding of virus transmission dynamics at a national scale. We use 17,135 near-complete genomes sampled from 27 Brazilian states and bordering country Paraguay. From March to November 2020, we detected co-circulation of multiple viral lineages that were linked to multiple importations (predominantly from Europe). After November 2020, we detected large, local transmission clusters within the country. In the absence of effective restriction measures, the epidemic progressed, and in January 2021 there was emergence and onward spread, both within and abroad, of variants of concern and variants under monitoring, including Gamma (P.1) and Zeta (P.2). We also characterized a genomic overview of the epidemic in Paraguay and detected evidence of importation of SARS-CoV-2 ancestor lineages and variants of concern from Brazil. Our findings show that genomic surveillance in Brazil enabled assessment of the real-time spread of emerging SARS-CoV-2 variants.