Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37447643

RESUMO

This paper presents a novel cutting fluid monitoring sensor system and a description of an algorithm framework to monitor the state of the cutting emulsion in the machine tool sump. One of the most frequently used coolants in metal machining is cutting emulsion. Contamination and gradual degradation of the fluid is a common occurrence, and unless certain maintenance steps are undertaken, the fluid needs to be completely replaced, which is both un-economical and non-ecological. Increasing the effective service life of the cutting emulsion is therefore desired, which can be achieved by monitoring the parameters of the fluid and taking corrective measures to ensure the correct levels of selected parameters. For this purpose, a multi-sensor monitoring probe was developed and a prototype device was subsequently created by additive manufacturing. The sensor-carrying probe was then placed in the machine tool sump and tested in operation. The probe automatically takes measurements of the selected cutting emulsion properties (temperature, concentration, pH, level height) in set intervals and logs them in the system. During the trial run of the probe, sensor accuracy was tracked and compared to reference measurements, achieving sufficiently low deviations for the purpose of continuous operation.


Assuntos
Algoritmos , Comércio , Emulsões , Ácido Dioctil Sulfossuccínico , Contaminação de Medicamentos
2.
Materials (Basel) ; 15(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35269169

RESUMO

Drilling of Carbon Fiber-Reinforced Plastic/Titanium alloy (CFRP/Ti) stacks represents one of the most widely used machining methods for making holes to fasten assemblies in civil aircraft. However, poor machinability of CFRP/Ti stacks in combination with the inhomogeneous behavior of CFRP and Ti alloy face manufacturing and scientific community with a problem of defining significant factors and conditions for ensuring hole quality in the CFRP/Ti alloy stacks. Herein, we investigate the effects of drilling parameters on drilling temperature and hole quality in CFRP/Ti alloy stacks by applying an artificial neuron network (ANN). We varied cutting speed, feed rate, and time delay factors according to the factorial design L9 Taguchi orthogonal array and measured the drilling temperature, hole diameter, and out of roundness by using a thermocouple and coordinate measuring machine methods for ANN analysis. The results show that the drilling temperature was sensitive to the effect of stack material layer, cutting speed, and time delay factors. The hole diameter was mainly affected by feed, stack material layer, and time delay, while out of roundness was influenced by the time delay, stack material layer, and cutting speed. Overall, ANN can be used for the identification of the drilling parameters-hole quality relationship.

3.
Materials (Basel) ; 15(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35057300

RESUMO

The paper deals with the issue of cutting zone and chip compression. The aim was to analyse the microstructure transverse section of the cutting zone on a metallographic cut, due to determined values of chip compression and plastic deformation, which affect the cutting process efficiency. The tested cutting tool material was coated with cemented carbide. The selected workpiece materials were C45 medium carbon steel of ISO grade and 62SiMnCr4 tool steel of ISO (W.Nr. 1.2101) grade. In the experiments, a DMG CTX alpha 500 turning centre was used. The cutting speed and feed were varied, and the depth of the cut was kept constant during the turning. The plastic deformation and chip compression determine the efficiency of the cutting process. The higher compression requires more work to perform the process and, therefore, it requires more energy for doing so. With the increase of the cutting speed, the deformation for C45 steel is decreased. The rapid deformation reduction was observed when the cutting speed was increased from 145 m/min to 180 m/min. Generally, deformation is decreasing with the increase of the feed. Only at a cutting speed of 145 m/min was the deformation elevation observed, when the feed was increased from 0.4 mm to 0.6 mm. During the turning of the 62SiMnCr4 tool steel we observed an error value at a cutting speed of 145 m/min and a feed of 0.4 mm was the middle cutting parameter. However, feed dependence was clear: With an increase of the feed, the plastic deformation was decreasing. This decreasing was more rapid with the increasing of the cutting speed. Besides plastic deformation, there was analysed chip compression as well. With the increasing of the cutting speed, there was a decrease of the chip compression. Due to a lack of information in the area of the chip compression and the plastic deformation in the cutting process, we decided to investigate the cutting zone for the turning of tool steels 62SiMnCr4, which was compared with the reference steel C45. The results could be applied to increase the efficiency of the process and improvement of the surface integrity.

4.
Sensors (Basel) ; 20(16)2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32784398

RESUMO

The presented paper scientifically discusses the progressive diagnostics of electrical drives in robots with sensor support. The AI (artificial intelligence) model proposed by the authors contains the technical conditions of fuzzy inference rule descriptions for the identification of a robot drive's technical condition and a source for the description of linguistic variables. The parameter of drive diagnostics for a robotized workplace that is proposed here is original and composed of the sum of vibration acceleration amplitudes ranging from a frequency of 6.3 Hz to 1250 Hz of a one-third-octave filter. Models of systems for the diagnostics of mechatronic objects in the robotized workplace are developed based on examples of CNC (Computer Numerical Control) machine diagnostics and mechatronic modules based on the fuzzy inference system, concluding with a solved example of the multi-criteria optimization of diagnostic systems. Algorithms for CNC machine diagnostics are implemented and intended only for research into precisely determined procedures for monitoring the lifetime of the mentioned mechatronic systems. Sensors for measuring the diagnostic parameters of CNC machines according to precisely determined measuring chains, together with schemes of hardware diagnostics for mechatronic systems are proposed.

5.
Materials (Basel) ; 13(14)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698544

RESUMO

The drilling of holes in CFRP/Ti (Carbon Fiber-Reinforced Plastic/Titanium alloy) alloy stacks is one of the frequently used mechanical operations during the manufacturing of fastening assemblies in temporary civil aircraft. A combination of inhomogeneous behavior and poor machinability of CFRP/Ti alloy stacks in one short drilling brought challenges to the manufacturing community. The impact of the drilling temperature and time delay factor under various cutting conditions on hole accuracy when machining CFRP/Ti alloy stacks is poorly studied. In this paper, the drilling temperature, the phenomenon of thermal expansion of the drill tool, and hole accuracy are investigated. An experimental study was carried out using thermocouples, the coordinate measuring machine method, and finite element analysis. The results showed that the time delay factor varied from 5 (s) to 120 (s), influences the thermal-dependent properties of CFRP, and leads to an increase in hole roundness. Additionally, the thermal expansion of the drill significantly contributes to the deviation of the hole diameter in Ti alloy.

6.
Materials (Basel) ; 13(8)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32325969

RESUMO

The article considers the issue of modeling the oscillations of a boring mandrel with vibration damper connected to the mandrel with a viscoelastic coupling. A mathematical model of the boring mandrel oscillations, machine support and inertial body (damper) is developed in the form of a differential equations system. The model is made in the form of a four-mass system of connected bodies. The solution to the differential equations system was found using the finite difference method, as well as the operator method with the use of the Laplace transform. As the simulation result, it was found that the use of vibration damper can significantly reduce the amplitude of the boring mandrel natural vibrations when pulsed, and also significantly reduce the forced vibrations amplitude when exposed to periodic disturbing forces. The developed mathematical model and algorithms for the numerical solution to the differential equations allowed us to choose the optimal parameters of the boring mandrel damping element. The obtained data will be used to create a prototype boring mandrel and conduct field tests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA