Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2401239, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874418

RESUMO

Deciphering nature's remarkable way of encoding functions in its biominerals holds the potential to enable the rational development of nature-inspired materials with tailored properties. However, the complex processes that convert solution-state precursors into solid biomaterials remain largely unknown. In this study, an unconventional approach is presented to characterize these precursors for the diatom-derived peptides R5 and synthetic Silaffin-1A1 (synSil-1A1). These molecules can form defined supramolecular assemblies in solution, which act as templates for solid silica structures. Using a tailored structural biology toolbox, the structure-function relationships of these self-assemblies are unveiled. NMR-derived constraints are employed to enable a recently developed fractal-cluster formalism and then reveal the architecture of the peptide assemblies in atomistic detail. Finally, by monitoring the self-assembly activities during silica formation at simultaneous high temporal and residue resolution using real-time spectroscopy, the mechanism is elucidated underlying template-driven silica formation. Thus, it is demonstrated how to exercise morphology control over bioinorganic solids by manipulating the template architectures. It is found that the morphology of the templates is translated into the shape of bioinorganic particles via a mechanism that includes silica nucleation on the solution-state complexes' surfaces followed by complete surface coating and particle precipitation.

2.
Small ; 20(26): e2307793, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38243890

RESUMO

When the ancestors of men moved from aquatic habitats to the drylands, their evolutionary strategy to restrict water loss is to seal the skin surface with lipids. It is unknown how these rigid ceramide-dominated lipids with densely packed chains squeeze through narrow extracellular spaces and how they assemble into their complex multilamellar architecture. Here it is shown that the human corneocyte lipid envelope, a monolayer of ultralong covalently bound lipids on the cell surface protein, templates the functional barrier assembly by partly fluidizing and rearranging the free extracellular lipids in its vicinity during the sculpting of a functional skin lipid barrier. The lipid envelope also maintains the fluidity of the extracellular lipids during mechanical stress. This local lipid fluidization does not compromise the permeability barrier. The results provide new testable hypotheses about epidermal homeostasis and the pathophysiology underlying diseases with impaired lipid binding to corneocytes, such as congenital ichthyosis. In a broader sense, this lipoprotein-mediated fluidization of rigid (sphingo)lipid patches may also be relevant to lipid rafts and cellular signaling events and inspire new functional materials.


Assuntos
Proteínas de Membrana , Humanos , Proteínas de Membrana/metabolismo , Lipídeos/química
3.
Protein Sci ; 33(1): e4849, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38037490

RESUMO

The breast cancer susceptibility 1 (BRCA1) protein plays a pivotal role in modulating the transcriptional activity of the vital intrinsically disordered transcription factor MYC. In this regard, mutations of BRCA1 and interruption of its regulatory activity are related to hereditary breast and ovarian cancer (HBOC). Interestingly, so far, MYC's main dimerization partner MAX (MYC-associated factor X) has not been found to bind BRCA1 despite a high sequence similarity between both oncoproteins. Herein, we show that a potential reason for this discrepancy is the heterogeneous conformational space of MAX, which encloses a well-documented folded coiled-coil homodimer as well as a less common intrinsically disordered monomer state-contrary to MYC, which exists mostly as intrinsically disordered protein in the absence of any binding partner. We show that when the intrinsically disordered state of MAX is artificially overpopulated, the binding of MAX to BRCA1 can readily be observed. We characterize this interaction by nuclear magnetic resonance (NMR) spectroscopy chemical shift and relaxation measurements, complemented with ITC and SAXS data. Our results suggest that BRCA1 directly binds the MAX monomer to form a disordered complex. Though probed herein under biomimetic in-vitro conditions, this finding can potentially stimulate new perspectives on the regulatory network around BRCA1 and its involvement in MYC:MAX regulation.


Assuntos
Proteína BRCA1 , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Humanos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteína BRCA1/química , Proteína BRCA1/metabolismo , Calorimetria/métodos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas Proto-Oncogênicas c-myc/metabolismo
4.
Life (Basel) ; 13(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38137847

RESUMO

In this study, in operandi SAXS experiments were conducted on samples of human hair with a varying degree of strain (2% within the elastic region and 10% beyond). Four different features in the SAXS patterns were evaluated: The intermediate filament distance perpendicular to and the distance from the meridional arc in the load direction, as well as the distances of the lipid bilayer peak in and perpendicular to the load direction. From the literature, one concludes that polar lipids in the cuticle are the origin of the lipid peak in the SAXS pattern, and this study shows that the observed strain in the lipids is much lower than in the intermediate filaments. We support these findings with SEM micrographs, which show that the scales in the cuticle deform much less than the cortex. The observed deformation of the intermediate filaments is very high, about 70% of the macrostrain, and the ratio of the transverse strain to the longitudinal strain at the nanoscale gives a Poisson ratio of νnano = 0.44, which is typical for soft matter. This work also finds that by varying the time period between two strain cycles, the typical strain recovery time is about 1000 min, i.e., one day. After this period, the structure is nearly identical to the initial structure, which suggests an interpretation that this is the typical time for the self-healing of hair after mechanical treatment.

6.
J Mater Chem A Mater ; 10(24): 12817-12831, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35812305

RESUMO

In organic-inorganic hybrid materials' (HMs) synthesis, it is intrinsically challenging to, at the same time, achieve (i) the concomitant synthesis of the components, (ii) nanoscopic interpenetration of the components, and (iii) covalent linking of the components. We here report the one-pot hydrothermal synthesis (HTS) of inorganic-organic HMs consisting of perylene bisimide (PBI) dyes and silica, using nothing but water as the medium and directly from the corresponding bisanhydrides, n-alkyl amines, and alkoxysilane precursors. First, in the absence of a functionalized alkoxysilane for linking, a mixture of the products, PBI and SiO2, is obtained. This evinces that the two products can be synthesized in parallel in the same vessel. Except for minor micromorphological changes, the concomitant synthesis does not affect each component's physicochemical properties. The PBI/SiO2 mixtures do not show synergistic properties. Second, through adding the linker aminopropyltriethoxysilane (APTS), covalently-linked class II hybrids are obtained. These PBI@SiO2 class II hybrids show synergistic materials properties: increased thermal stability is obtained in combination with nanoscopic homogeneity. The PBI moieties are dissolved in the solid SiO2 matrix, while being covalently linked to the matrix. This leads to solution-like fluorescence with vibronic fine-structure of the dyes. Moreover, through tuning the SiO2 amount, the band gaps of the class II hybrid materials can be systematically shifted. We exploit these optoelectronic properties by using the PBI@SiO2 hybrids as heterogeneous and reusable photoredox catalysts for the reduction of aryl halides. Finally, we present a detailed small-angle X-ray scattering and powder X-ray diffraction study of PBI@SiO2 synthesized at various reaction times, revealing the existence of an ordered PBI-oligomeric silesquioxane-type intermediate, which subsequently further condenses to the final nanoscopically homogeneous PBI@SiO2 material. These ordered intermediates point at HTS' propensity to favor crystallinity (to date known for organic and inorganic compounds, respectively) to also apply to hybrid structures, and shed additional light on the long-standing question of structure formation in the early stages of sol-gel processes: they corroborate Brown's hypothesis (1965) that trifunctional hydroxysilanes form surprisingly well controlled oligomers in the early stages of polycondensation.

7.
Dent Mater ; 38(2): 318-332, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34961642

RESUMO

OBJECTIVES: Lithium-based glass-ceramics are currently dominating the landscape of dental restorative ceramic materials, with new products taking the market by storm in the last years. Though, the difference among all these new and old products is not readily accessible for the practitioner, who faces the dilemma of reaching a blind choice or trusting manufacturers' marketing brochures. To add confusion, new compositions tend to wear material terminologies inherited from vanguard dental lithium disilicates, disregarding accuracy. Here we aim to characterize such materials for their microstructure, crystalline fraction, glass chemistry and mechanical properties. METHODS: Eleven commercial dental lithium-based glass ceramics were evaluated: IPS e.max® CAD, IPS e.max® Press, Celtra® Duo, Suprinity® PC, Initial™ LiSi Press, Initial™ LiSi Block, Amber® Mill, Amber® Press, N!CE®, Obsidian® and CEREC Tessera™. The chemical composition of their base glasses was measured by X-Ray Fluorescence Spectroscopy (XRF) and Inductive Coupled Plasma Optical Emission Spectroscopy (ICP-OES), as well as the composition of their residual glass by subtracting the oxides bound in the crystallized fraction, characterized by X-Ray Diffraction (XRD) and Rietveld refinement, and quantified accurately using the G-factor method (QXRD). The crystallization behavior is revealed by differential scanning calorimetry (DSC) curves. Elastic constants are provided from Resonant Ultrasound Spectroscopy (RUS) and the fracture toughness measured by the Ball-on-Three-Balls method (B3B- K Ic). The microstructure is revealed by field-emission scanning electron microscopy (FE-SEM). RESULTS: The base glasses showed a wide range of SiO2 /Li2O ratios, from 1.5 to 3.0, with the degree of depolymerization dropping from ½ to 2/3 of the initial connectivity. Materials contained Li2SiO3+Li3PO4, Li2SiO3+Li3PO4+Li2Si2O5, Li2Si2O5+Li3PO4+ Cristobalite and/or Quartz and Li2Si2O5+Li3 PO4+LiAlSi2O6, in crystallinity degrees from 45 to 80 vol%. Crystalline phases could be traced to their crystallization peaks on the DSC curves. Pressable materials and IPS e.max® CAD were the only material showing micrometric phases, with N!CE® and Initial™ LiSi Block showing solely nanometric crystals, with the rest presenting a mixture of submicrometric and nanometric particles. Fracture toughness from 1.45 to 2.30 MPa√m were measured, with the linear correlation to crystalline fraction breaking down for submicrometric and nanometric crystal phases. SIGNIFICANCE: Dental lithium-based silicate glass-ceramics cannot be all put in the same bag, as differences exist in chemical composition, microstructure, crystallinity and mechanical properties. Pressable materials still perform better mechanically than CAM/CAM blocks, which loose resistance to fracture when crystal phases enter the submicrometric and nanometric range.


Assuntos
Porcelana Dentária , Lítio , Cerâmica , Desenho Assistido por Computador , Teste de Materiais , Silicatos , Dióxido de Silício , Propriedades de Superfície
8.
J Am Chem Soc ; 143(45): 18997-19007, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34699723

RESUMO

Herein we report the synthesis of covalently functionalized carbon nano-onions (CNOs) via a reductive approach using unprecedented alkali-metal CNO intercalation compounds. For the first time, an in situ Raman study of the controlled intercalation process with potassium has been carried out revealing a Fano resonance in highly doped CNOs. The intercalation was further confirmed by electron energy loss spectroscopy and X-ray diffraction. Moreover, the experimental results have been rationalized with DFT calculations. Covalently functionalized CNO derivatives were synthesized by using phenyl iodide and n-hexyl iodide as electrophiles in model nucleophilic substitution reactions. The functionalized CNOs were exhaustively characterized by statistical Raman spectroscopy, thermogravimetric analysis coupled with gas chromatography and mass spectrometry, dynamic light scattering, UV-vis, and ATR-FTIR spectroscopies. This work provides important insights into the understanding of the basic principles of reductive CNOs functionalization and will pave the way for the use of CNOs in a wide range of potential applications, such as energy storage, photovoltaics, or molecular electronics.

9.
J Mech Behav Biomed Mater ; 124: 104739, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34488173

RESUMO

As a predominantly lithium-metasilicate-containing glass-ceramic, Obsidian® (Glidewell Laboratories, USA) has a peculiar composition and microstructure among other dental lithium silicates, warranting an evaluation of the crystallization process to establish relationships between microstructural evolution and mechanical properties. Blocks of the pre-crystallized material were processed into slices measuring 12 × 12 × 1.5 mm3 and subjected to the mandatory crystallization firing by interruption the heating ramp at temperatures between 700 °C and 820 °C (dwell time between 0 min and 10 min). The crystallization peaks of the base and the pre-crystallized glass were obtained by differential scanning calorimetry (DSC). The coefficient of thermal expansion and the glass transition temperature were derived from differential thermal analysis (DTA). X-ray diffraction (XRD) was performed to quantify and characterize the crystal phase fraction, whose microstructural changes were visualised using FE-SEM. The ball-on-three-balls surface crack in flexure method was used to track the evolution of fracture toughness. The microstructural evolution during crystallization firing was characterized by two regimes of growth: (i) the progressive revitrification (dissolution) of the 5 µm-sized Li2SiO3 polycrystals manifested at the boundaries of nanometric single coherent scattering domains (CSDs); (ii) the non-isothermal period is marked by an Ostwald ripening process characterized by the growth of the single crystalline structures into 0.5 µm polycrystals. The decrease in the crystal fraction of Li2SiO3 crystals from 41 vol.% to 37 vol.% is accompanied by the formation of a small amount of Li3PO4 (6 vol.%), maintaining the total crystal phase fraction mostly constant. The KIc accompanied the reverse trend of crystallinity, departing from 1.63 ± 0.02 MPa√m at the pre-crystallized stage to 1.84 ± 0.06 MPa√m after 10 min at 820 °C in a linear trend. Toughening appeared counter-intuitive in view of the decreasing crystal fraction and size, to rather relate to the relaxation of the residual stresses in the interstitial glass due to the spheroidization of the initially anisotropic, elongated Li2SiO3 crystals into round, nearly equiaxed particles, as let suggest from the disappearance of the extensive microcracking.


Assuntos
Vidro , Lítio , Cerâmica , Porcelana Dentária , Teste de Materiais , Microscopia Eletrônica de Varredura , Propriedades de Superfície
10.
Molecules ; 25(9)2020 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-32375277

RESUMO

Yak belly hair was proposed as a cheap substitute for human hair for the development of hair dyes, as its chemical composition closely resembles human hair in Raman spectroscopy. The absence of melanin in yak belly hair also leads to a strong reduction of fluorescence in Raman measurements, which is advantageous for the investigation of the effectivity of hair dyes. To assess the suitability for replacing human hair, we analyzed similarities and differences of both hair types with a variety of methods: Raman spectroscopy, to obtain molecular information; small-angle X-ray scattering to determine the nanostructure, such as intermediate filament distance, distance of lipid layers and nanoporosity; optical and scanning electron microscopy of surfaces and cross sections to determine the porosity at the microstructural level; and density measurements and tensile tests to determine the macroscopic structure, macroporosity and mechanical properties. Both types of hair are similar on a molecular scale, but differ on other length scales: yak belly hair has a smaller intermediate filament distance on the nanoscale. Most striking is a higher porosity of yak belly hair on all hierarchical levels, and a lower Young's modulus on the macroscale. In addition to the higher porosity, yak belly hair has fewer overlapping scales of keratin, which further eases the uptake of coloring. This makes, on the other hand, a comparison of coloring processes difficult, and limits the usefulness of yak belly hair as a substitute for human hair.


Assuntos
Tinturas para Cabelo/química , Cabelo/química , Animais , Bovinos , Colorimetria , Humanos , Fenômenos Mecânicos , Estrutura Molecular , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Porosidade , Espalhamento a Baixo Ângulo , Análise Espectral Raman , Difração de Raios X
11.
Bone ; 131: 115176, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31809904

RESUMO

Human bone becomes increasingly brittle with ageing. Bones also fracture differently under slow and fast loadings, being ductile and brittle, respectively. The effects of a combination of these two factors have never been examined before. Here we show that cortical bone is most fracture-resistant at the physiologically prevalent intermediate strain rates of 10-3 s-1 to 10-2 s-1 such as they occur in walking or running, slightly weaker at slower quasistatic and much weaker at fast impact loading rates. In young cortical bone (15 years of age) the ductile-to-brittle transition (DBT) occurs at strain rates of 10-2 s-1, in old cortical bone (85 yrs) at speeds lower by a factor of 10 to 40. Other research has shown that the energy required to break bone (per unit of fracture surface) drops as much as 60% between these two ages. Therefore, DBT seems to compound the well-known phenomenon of 'brittle old bones'. Old bones can only cope with slow movement, young ones with both slow and fast movement. These observed material characteristics of (i) a shift of the DBT and (ii) a reduced energy absorption capacity appear to contribute at least as much to the loss of bone quality as the various quantity based (lowered bone density and mineral content) explanations of the past. They also provide a new powerful paradigm, which allows us to demonstrate mechanically, and uniquely, how human bone becomes increasingly brittle with age.


Assuntos
Fraturas Ósseas , Idoso de 80 Anos ou mais , Envelhecimento , Densidade Óssea , Osso e Ossos , Humanos , Resistência à Tração
12.
Nanomaterials (Basel) ; 9(5)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100971

RESUMO

Silicon oxycarbides (SiOC) are an interesting alternative to state-of-the-art lithium battery anode materials, such as graphite, due to potentially higher capacities and rate capabilities. Recently, it was also shown that this class of materials shows great prospects towards sodium ion batteries. Yet, bulk SiOCs are still severely restricted with regard to their electrochemical performance. In the course of this work, a novel and facile strategy towards the synthesis of mesoporous and carbon-rich SiOC will be presented. To achieve this goal, 4,4'-bis(triethoxysilyl)-1,1'-biphenyl was sol-gel processed in the presence of the triblock copolymer Pluronic P123. After the removal of the surfactant using Soxhlet extraction the organosilica material was subsequently carbonized under an inert gas atmosphere at 1000 °C. The resulting black powder was able to maintain all structural features and the porosity of the initial organosilica precursor making it an interesting candidate as an anode material for both sodium and lithium ion batteries. To get a detailed insight into the electrochemical properties of the novel material in the respective battery systems, electrodes from the nanostructured SiOC were studied in half-cells with galvanostatic charge/discharge measurements. It will be shown that nanostructuring of SiOC is a viable strategy in order to outperform commercially applied competitors.

13.
Nanoscale ; 11(22): 10615-10621, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31139784

RESUMO

Single-molecule magnets exhibit magnetic ordering due to exchange coupling between localized spin components that makes them primary candidates as nanometric spintronic elements. Here we manipulate exchange interactions within a single-molecule magnet by nanometric structural confinement, exemplified with single-wall carbon nanotubes that encapsulate trimetric nickel(ii) acetylacetonate hosting three frustrated spins. It is revealed from bulk and Ni 3d orbital magnetic susceptibility measurements that the carbon tubular confinement allows a unique one-dimensional arrangement of the trimer in which the nearest-neighbour exchange is reversed from ferromagnetic to antiferromagnetic, resulting in quenched frustration as well as the Pauli paramagnetism is enhanced. The exchange reversal and enhanced spin delocalisation demonstrate the means of mechanically and electrically manipulating molecular magnetism at the nanoscale for nano-mechatronics and spintronics.

14.
Sci Rep ; 9(1): 2696, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30804439

RESUMO

Here we show that the well-known ovalbumin epitope SIINFEKL that is routinely used to stimulate ovalbumin-specific T cells and to test new vaccine adjuvants can form a stable hydrogel. We investigate properties of this hydrogel by a range of spectroscopic and imaging techniques demonstrating that the hydrogel is stabilized by self-assembly of the peptide into nanofibres via stacking of ß-sheets. As peptide hydrogels are known to stimulate an immune response as adjuvants, the immunoactive properties of the SIINFEKL peptide may also originate from its propensity to self-assemble into a hydrogel. This finding requires a re-evaluation of this epitope in adjuvant testing.


Assuntos
Epitopos/química , Hidrogéis/química , Ovalbumina/química , Peptídeos/química , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/ultraestrutura , Dicroísmo Circular , Humanos , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Fragmentos de Peptídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Angew Chem Int Ed Engl ; 58(17): 5763-5768, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30675972

RESUMO

The chemical bulk reductive covalent functionalization of thin-layer black phosphorus (BP) using BP intercalation compounds has been developed. Through effective reductive activation, covalent functionalization of the charged BP by reaction with organic alkyl halides is achieved. Functionalization was extensively demonstrated by means of several spectroscopic techniques and DFT calculations; the products showed higher functionalization degrees than those obtained by neutral routes.

16.
Nanomaterials (Basel) ; 8(10)2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30301246

RESUMO

Thermochemical energy storage is considered as an auspicious method for the recycling of medium-temperature waste heat. The reaction couple Mg(OH)2⁻MgO is intensely investigated for this purpose, suffering so far from limited cycle stability. To overcome this issue, Mg(OH)2, MgCO3, and MgC2O4·2H2O were compared as precursor materials for MgO production. Depending on the precursor, the particle morphology of the resulting MgO changes, resulting in different hydration behavior and cycle stability. Agglomeration of the material during cyclization was identified as main reason for the decreased reactivity. Immersion of the spent material in liquid H2O decomposes the agglomerates restoring the initial reactivity of the material, thus serving as a regeneration step.

17.
Angew Chem Int Ed Engl ; 56(48): 15267-15273, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28980764

RESUMO

Black phosphorus intercalation compounds (BPICs) with alkali metals (namely: K and Na) have been synthesized in bulk by solid-state as well as vapor-phase reactions. By means of a combination of in situ X-ray diffraction, Raman spectroscopy, and DFT calculations the structural behavior of the BPICs at different intercalation stages has been demonstrated for the first time. Our results provide a glimpse into the very first steps of a new family of intercalation compounds, with a distinct behavior as compared to its graphite analogues (GICs), showing a remarkable structural complexity and a dynamic behavior.

18.
Nat Commun ; 8: 15192, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28480893

RESUMO

The verification of a successful covalent functionalization of graphene and related carbon allotropes can easily be carried out by Raman spectroscopy. Nevertheless, the unequivocal assignment and resolution of individual lattice modes associated with the covalent binding of addends was elusive up to now. Here we present an in situ Raman study of a controlled functionalization of potassium intercalated graphite, revealing several new bands appearing in the D-region of the spectrum. The evolution of these bands with increasing degree of functionalization from low to moderate levels provides a basis for the deconvolution of the different components towards quantifying the extent of functionalization. By complementary DFT calculations we were able to identify the vibrational changes in the close proximity of the addend bearing lattice carbon atoms and to assign them to specific Raman modes. The experimental in situ observation of the developing functionalization along with the reoxidation of the intercalated graphite represents an important step towards an improved understanding of the chemistry of graphene.

19.
Sci Rep ; 7(1): 2439, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28550280

RESUMO

Coordination polymerization leads to various metal-organic frameworks (MOFs) with unique physical properties and chemical functionalities. One of the challenges towards their applications as porous materials is to make MOFs optimally conductive to be used as electronic components. Here, it is demonstrated that Co-MOF-74, a honeycomb nano-framework with one-dimensionally arranged cobalt atoms, advances its physical properties by accommodating tetracyanochinodimethan (TCNQ), an acceptor molecule. Strong intermolecular charge transfer reduces the optical band gap down to 1.5 eV of divalent TCNQ and enhances the electrical conduction, which allows the MOF to be utilized for resistive gas- and photo-sensing. The results provide insight into the electronic interactions in doped MOFs and pave the way for their electronic applications.

20.
J Am Chem Soc ; 139(14): 5175-5182, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28322052

RESUMO

Covalently functionalized graphene derivatives were synthesized via benchmark reductive routes using graphite intercalation compounds (GICs), in particular KC8. We have compared the graphene arylation and alkylation of the GIC using 4-tert-butylphenyldiazonium and bis(4-(tert-butyl)phenyl)iodonium salts, as well as phenyl iodide, n-hexyl iodide, and n-dodecyl iodide, as electrophiles in model reactions. We have put a particular focus on the evaluation of the degree of addition and the bulk functionalization homogeneity (Hbulk). For this purpose, we have employed statistical Raman spectroscopy (SRS), and a forefront characterization tool using thermogravimetric analysis coupled with FT-IR, gas chromatography, and mass spectrometry (TGA/FT-IR/GC/MS). The present study unambiguously shows that the graphene functionalization using alkyl iodides leads to the best results, in terms of both the degree of addition and the Hbulk. Moreover, we have identified the reversible character of the covalent addition chemistry, even at temperatures below 200 °C. The thermally induced addend cleavage proceeds homolytically, which allows for the detection of dimeric cleavage products by TGA/FT-IR/GC/MS. This dimerization points to a certain degree of regioselectivity, leading to a low sheet homogeneity (Hsheet). Finally, we developed this concept by performing the reductive alkylation reaction in monolayer CVD graphene films. This work provides important insights into the understanding of basic principles of reductive graphene functionalization and will serve as a guide in the design of new graphene functionalization concepts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA