Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(11)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652544

RESUMO

Carbohydrates and lipids provide the majority of substrates to fuel mitochondrial oxidative phosphorylation. Metabolic inflexibility, defined as an impaired ability to switch between these fuels, is implicated in a number of metabolic diseases. Here, we explore the mechanism by which physical inactivity promotes metabolic inflexibility in skeletal muscle. We developed a mouse model of sedentariness, small mouse cage (SMC), that, unlike other classic models of disuse in mice, faithfully recapitulated metabolic responses that occur in humans. Bioenergetic phenotyping of skeletal muscle mitochondria displayed metabolic inflexibility induced by physical inactivity, demonstrated by a reduction in pyruvate-stimulated respiration (JO2) in the absence of a change in palmitate-stimulated JO2. Pyruvate resistance in these mitochondria was likely driven by a decrease in phosphatidylethanolamine (PE) abundance in the mitochondrial membrane. Reduction in mitochondrial PE by heterozygous deletion of phosphatidylserine decarboxylase (PSD) was sufficient to induce metabolic inflexibility measured at the whole-body level, as well as at the level of skeletal muscle mitochondria. Low mitochondrial PE in C2C12 myotubes was sufficient to increase glucose flux toward lactate. We further implicate that resistance to pyruvate metabolism is due to attenuated mitochondrial entry via mitochondrial pyruvate carrier (MPC). These findings suggest a mechanism by which mitochondrial PE directly regulates MPC activity to modulate metabolic flexibility in mice.


Assuntos
Mitocôndrias Musculares , Músculo Esquelético , Fosfatidiletanolaminas , Ácido Pirúvico , Animais , Camundongos , Músculo Esquelético/metabolismo , Ácido Pirúvico/metabolismo , Mitocôndrias Musculares/metabolismo , Fosfatidiletanolaminas/metabolismo , Comportamento Sedentário , Masculino , Carboxiliases/metabolismo , Carboxiliases/genética , Camundongos Knockout , Estearoil-CoA Dessaturase
2.
Methods Mol Biol ; 2662: 67-75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37076671

RESUMO

High-resolution respirometry is commonly used to quantify mitochondrial respiratory rates. In the respirometry chamber, a change in oxygen concentration is measured by a polarographic electrode to derive the rate of oxygen consumption (JO2). Here, we describe our adapted protocol to bioenergetically phenotype mitochondria from mouse brown adipose tissue (BAT). Given the presence of uncoupling protein 1 (UCP1), mitochondria from BAT provide unique challenges and opportunities in applying high-resolution respirometry to understand energy transduction through oxidative phosphorylation (OXPHOS).


Assuntos
Metabolismo Energético , Mitocôndrias , Animais , Camundongos , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
3.
Elife ; 122023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36951533

RESUMO

Reactive oxygen species (ROS) accumulation is a cardinal feature of skeletal muscle atrophy. ROS refers to a collection of radical molecules whose cellular signals are vast, and it is unclear which downstream consequences of ROS are responsible for the loss of muscle mass and strength. Here, we show that lipid hydroperoxides (LOOH) are increased with age and disuse, and the accumulation of LOOH by deletion of glutathione peroxidase 4 (GPx4) is sufficient to augment muscle atrophy. LOOH promoted atrophy in a lysosomal-dependent, proteasomal-independent manner. In young and old mice, genetic and pharmacological neutralization of LOOH or their secondary reactive lipid aldehydes robustly prevented muscle atrophy and weakness, indicating that LOOH-derived carbonyl stress mediates age- and disuse-induced muscle dysfunction. Our findings provide novel insights for the role of LOOH in sarcopenia including a therapeutic implication by pharmacological suppression.


Assuntos
Sarcopenia , Camundongos , Animais , Sarcopenia/patologia , Peróxidos Lipídicos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Músculo Esquelético/metabolismo , Estresse Oxidativo
4.
Sci Adv ; 9(8): eade7864, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827367

RESUMO

Thermogenesis by uncoupling protein 1 (UCP1) is one of the primary mechanisms by which brown adipose tissue (BAT) increases energy expenditure. UCP1 resides in the inner mitochondrial membrane (IMM), where it dissipates membrane potential independent of adenosine triphosphate (ATP) synthase. Here, we provide evidence that phosphatidylethanolamine (PE) modulates UCP1-dependent proton conductance across the IMM to modulate thermogenesis. Mitochondrial lipidomic analyses revealed PE as a signature molecule whose abundance bidirectionally responds to changes in thermogenic burden. Reduction in mitochondrial PE by deletion of phosphatidylserine decarboxylase (PSD) made mice cold intolerant and insensitive to ß3 adrenergic receptor agonist-induced increase in whole-body oxygen consumption. High-resolution respirometry and fluorometry of BAT mitochondria showed that loss of mitochondrial PE specifically lowers UCP1-dependent respiration without compromising electron transfer efficiency or ATP synthesis. These findings were confirmed by a reduction in UCP1 proton current in PE-deficient mitoplasts. Thus, PE performs a previously unknown role as a temperature-responsive rheostat that regulates UCP1-dependent thermogenesis.


Assuntos
Fosfatidiletanolaminas , Prótons , Camundongos , Animais , Proteína Desacopladora 1/metabolismo , Fosfatidiletanolaminas/metabolismo , Mitocôndrias/metabolismo , Termogênese , Obesidade/metabolismo , Trifosfato de Adenosina/metabolismo , Camundongos Knockout
6.
Angiogenesis ; 24(4): 789-805, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33956260

RESUMO

Collagen type IV (Col IV) is a basement membrane protein associated with early blood vessel morphogenesis and is essential for blood vessel stability. Defects in vascular Col IV deposition are the basis of heritable disorders, such as small vessel disease, marked by cerebral hemorrhage and drastically shorten lifespan. To date, little is known about how endothelial cells regulate the intracellular transport and selective secretion of Col IV in response to angiogenic cues, leaving a void in our understanding of this critical process. Our aim was to identify trafficking pathways that regulate Col IV deposition during angiogenic blood vessel development. We have identified the GTPase Rab10 as a major regulator of Col IV vesicular trafficking during vascular development using both in vitro imaging and biochemistry as well as in vivo models. Knockdown of Rab10 reduced de novo Col IV secretion in vivo and in vitro. Mechanistically, we determined that Rab10 is an indirect mediator of Col IV secretion, partnering with atypical Rab25 to deliver the enzyme lysyl hydroxylase 3 (LH3) to Col IV-containing vesicles staged for secretion. Loss of Rab10 or Rab25 results in depletion of LH3 from Col IV-containing vesicles and rapid lysosomal degradation of Col IV. Furthermore, we demonstrate that Rab10 is Notch responsive, indicating a novel connection between permissive Notch-based vessel maturation programs and vesicle trafficking. Our results illustrate both a new trafficking-based component in the regulated secretion of Col IV and how this vesicle trafficking program interfaces with Notch signaling to fine-tune basement membrane secretion during blood vessel development.


Assuntos
Colágeno Tipo IV , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase , Membrana Basal , Colágeno Tipo IV/genética , Células Endoteliais , Morfogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA