Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 83(3): 393-403, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599353

RESUMO

The positive transcription elongation factor b (P-TEFb) is composed of cyclins T1 or T2 and cyclin-dependent kinase 9 that regulate the elongation phase of transcription by RNA polymerase II. By antagonizing negative elongation factors and phosphorylating the C-terminal domain of RNA polymerase II, P-TEFb facilitates the elongation and co-transcriptional processing of nascent transcripts. This step is critical for the expression of most eukaryotic genes. In growing cells, P-TEFb is regulated negatively by its reversible associations with HEXIM1/2 in the 7SK snRNP and positively by a number of transcription factors, as well as the super elongation complex. In resting cells, P-TEFb falls apart, and cyclin T1 is degraded by the proteasome. This complex regulation of P-TEFb has evolved for the precise temporal and spatial regulation of gene expression in the organism. Its dysregulation contributes to inflammatory and neoplastic conditions.


Assuntos
Fator B de Elongação Transcricional Positiva , RNA Polimerase II , Humanos , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Células HeLa , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Ciclina T/genética , Ciclina T/metabolismo , Transcrição Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Nucleic Acids Res ; 50(9): 5000-5013, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35524561

RESUMO

P-TEFb, composed of CycT1 and CDK9, regulates the elongation of transcription by RNA polymerase II. In proliferating cells, it is regulated by 7SK snRNA in the 7SK snRNP complex. In resting cells, P-TEFb is absent, because CycT1 is dephosphorylated, released from CDK9 and rapidly degraded. In this study, we identified the mechanism of this degradation. We mapped the ubiquitination and degradation of free CycT1 to its N-terminal region from positions 1 to 280. This region is ubiquitinated at six lysines, where E3 ligases Siah1 and Siah2 bind and degrade these sequences. Importantly, the inhibition of Siah1/2 rescued the expression of free CycT1 in proliferating as well as resting primary cells. We conclude that Siah1/2 are the E3 ligases that bind and degrade the dissociated CycT1 in resting, terminally differentiated, anergic and/or exhausted cells.


Assuntos
Fator B de Elongação Transcricional Positiva , Fatores de Transcrição , Ubiquitina-Proteína Ligases/metabolismo , Fenômenos Fisiológicos Celulares , Ciclina T/genética , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/metabolismo , RNA Nuclear Pequeno , Fatores de Transcrição/metabolismo , Transcrição Gênica
3.
Cell Rep ; 36(6): 109514, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34380030

RESUMO

HIV-1-negative factor (Nef) protein antagonizes serine incorporator 5 (SERINC5) by redirecting this potent restriction factor to the endosomes and lysosomes for degradation. However, the precise mechanism remains unclear. Using affinity purification/mass spectrometry, we identify cyclin K (CycK) and cyclin-dependent kinase 13 (CDK13) as a Nef-associated kinase complex. CycK/CDK13 phosphorylates the serine at position 360 (S360) in SERINC5, which is required for Nef downregulation of SERINC5 from the cell surface and its counteractivity of the SERINC5 antiviral activity. To understand the role of S360 phosphorylation, we generate chimeric proteins between CD8 and SERINC5 to study their response to Nef. Nef not only downregulates but, importantly, also binds to this chimera in an S360-dependent manner. Thus, S360 phosphorylation increases interactions between Nef and SERINC5 and initiates the destruction of SERINC5 by the endocytic machinery.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclinas/metabolismo , Infecções por HIV/virologia , HIV-1/patogenicidade , Proteínas de Membrana/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Regulação para Baixo , Células HEK293 , Infecções por HIV/metabolismo , Humanos , Células Jurkat , Espectrometria de Massas , Proteínas de Membrana/química , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Proteômica , Proteínas Recombinantes de Fusão/metabolismo
4.
AIDS Res Hum Retroviruses ; 36(10): 800-807, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32683901

RESUMO

Despite the success of antiretroviral therapy (ART), ART fails to eradicate the virus and HIV cure has remained beyond the reach of current treatments. ART targets replicating virally infected but not latently infected cells, which have limited expression of factors important for proliferation and cellular activity, including positive transcription elongation factor b (P-TEFb) and nuclear factor κB (NF-κB). Levels of the cyclin T1 (CycT1) subunit of P-TEFb are low to absent in resting T cells, and treatment with proteasome inhibitors (PIs) increases CycT1 protein levels to those of proliferating T cells. In this study, the clinically approved PI bortezomib reactivated latent HIV in latently infected primary CD4+ T cells. Bortezomib not only increased levels of CycT1 but also activated NF-κB. Strikingly, as opposed to most currently researched latency reversing agents (LRAs), bortezomib did not require a second LRA to potently reactivate latent HIV. Effects of bortezomib on resting T cells and reactivation of HIV suggest a possible direction for future attempts to diminish the viral reservoir in HIV+ individuals.


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , Infecções por HIV/tratamento farmacológico , Humanos , Ativação Viral , Latência Viral
5.
AIDS Res Hum Retroviruses ; 35(8): 710-717, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31044597

RESUMO

While the roles in HIV transcription of many cyclin-dependent kinases (CDKs) have been well defined, little is known about the impact of mediator kinases (MDKs), CDK8 and CDK19, in this process. Mediator complexes containing CDK8 or CDK19 repress or activate the expression of selected genes. The aim of this study was to investigate the role of MDKs in HIV transcription. siRNA knockdown of both MDKs had no effect on HIV transcription. This result was confirmed using two MDK inhibitors, Cortistatin A (CA) and Senexin A (SnxA). Furthermore, neither CA nor SnxA inhibited viral reactivation in Jurkat cell models of HIV latency. Taken together, these results indicate that MDKs are not required for HIV transcription.


Assuntos
Quinase 8 Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , HIV-1/genética , Transcrição Gênica/genética , Ativação Viral/efeitos dos fármacos , Linhagem Celular Tumoral , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , HIV-1/metabolismo , Células HeLa , Humanos , Células Jurkat , Compostos Policíclicos/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Latência Viral/efeitos dos fármacos
6.
PLoS Pathog ; 14(11): e1007402, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30395647

RESUMO

Transcription of HIV provirus is a key step of the viral cycle, and depends on the recruitment of the cellular positive transcription elongation factor b (P-TEFb) to the HIV promoter. The viral transactivator Tat can displace P-TEFb from the 7SK small nuclear ribonucleoprotein, where it is bound and inactivated by HEXIM1, and bring it to TAR, which allows the stalled RNA polymerase II to transition to successful transcription elongation. In this study, we designed a chimeric inhibitor of HIV transcription by combining functional domains from HEXIM1 and Tat. The chimera (HT1) potently inhibited gene expression from the HIV promoter, by competing with Tat for TAR and P-TEFb binding, while keeping the latter inactive. HT1 inhibited spreading infection as well as viral reactivation in lymphocyte T cell line models of HIV latency, with little effect on cellular transcription and metabolism. This proof-of-concept study validates an innovative approach to interfering with HIV transcription via peptide mimicry and competition for RNA-protein interactions. HT1 represents a new candidate for HIV therapy, or HIV cure via the proposed block and lock strategy.


Assuntos
Infecções por HIV/terapia , HIV-1/fisiologia , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Replicação Viral/fisiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Células HEK293 , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Repetição Terminal Longa de HIV , Soropositividade para HIV , HIV-1/genética , HIV-1/metabolismo , Células HeLa , Humanos , Células Jurkat , Provírus/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/genética , Fatores de Transcrição , Latência Viral , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
7.
PLoS One ; 13(11): e0208055, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30475902

RESUMO

Although anti-retroviral therapies have greatly extended the lives of HIV infected individuals, current treatments are unable to completely eliminate virally infected cells. A number of latency reversing agents have been proposed for use in a "shock and kill" strategy to reactivate latent HIV, thus making it vulnerable to killing mechanisms. Procyanidin trimer C1 (PC1) is a flavonoid found in multiple plant sources including grape, apple, and cacao, which has antioxidant and anti-inflammatory properties. We determined that PC1 reactivates latent HIV in cell line and primary cell models of HIV, through activation of the MAPK pathway. Notably, PC1 reactivates latent HIV without increasing surface markers of T cell activation. Combining several therapeutics, which activate HIV transcription through different mechanisms, is the most efficient approach to clinically reactivate latent reservoirs. We utilized PC1 (MAPK agonist), kansui (PKC agonist), and JQ1 (BET bromodomain inhibitor) in a triple combination approach to reactivate latent HIV in cell line and primary cell models of HIV latency. When used in combination, low concentrations which fail to reactivate HIV as single treatments, are effective. Thus, several mechanisms, using distinct activation pathways, act together to reactivate latent HIV.


Assuntos
Fármacos Anti-HIV/farmacologia , Flavonoides/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Latência Viral/efeitos dos fármacos , Azepinas/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/enzimologia , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Inibidores Enzimáticos/farmacologia , Infecções por HIV/enzimologia , Infecções por HIV/virologia , Humanos , Células Jurkat , Cultura Primária de Células , Triazóis/farmacologia
8.
J Biol Chem ; 293(14): 4993-5004, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463681

RESUMO

Autoimmune regulator (AIRE) and nuclear factor-κB (NF-κB) are transcription factors (TFs) that direct the expression of individual genes and gene clusters. Bromodomain-containing protein 4 (BRD4) is an epigenetic regulator that recognizes and binds to acetylated histones. BRD4 also has been reported to promote interactions between the positive transcription elongation factor b (P-TEFb) and AIRE or P-TEFb and NF-κB subunit p65. Here, we report that AIRE and p65 bind to P-TEFb independently of BRD4. JQ1, a compound that disrupts interactions between BRD4 and acetylated proteins, does not decrease transcriptional activities of AIRE or p65. Moreover, siRNA-mediated inactivation of BRD4 alone or in combination with JQ1 had no effects on AIRE- and NF-κB-targeted genes on plasmids and in chromatin and on interactions between P-TEFb and AIRE or NF-κB. Finally, ChIP experiments revealed that recruitment of P-TEFb to AIRE or p65 to transcription complexes was independent of BRD4. We conclude that direct interactions between AIRE, NF-κB, and P-TEFb result in efficient transcription of their target genes.


Assuntos
Proteínas Nucleares/metabolismo , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteínas de Ciclo Celular , Deleção de Genes , Células HEK293 , Humanos , Insulina/genética , Proteínas Nucleares/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Regiões Promotoras Genéticas , Mapas de Interação de Proteínas , Interferência de RNA , Fatores de Transcrição/genética , Proteína AIRE
9.
PLoS Pathog ; 14(1): e1006830, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29304101

RESUMO

The lentiviral protein Viral Infectivity Factor (Vif) counteracts the antiviral effects of host APOBEC3 (A3) proteins and contributes to persistent HIV infection. Vif targets A3 restriction factors for ubiquitination and proteasomal degradation by recruiting them to a multi-protein ubiquitin E3 ligase complex. Here, we describe a degradation-independent mechanism of Vif-mediated antagonism that was revealed through detailed structure-function studies of antibody antigen-binding fragments (Fabs) to the Vif complex. Two Fabs were found to inhibit Vif-mediated A3 neutralization through distinct mechanisms: shielding A3 from ubiquitin transfer and blocking Vif E3 assembly. Combined biochemical, cell biological and structural studies reveal that disruption of Vif E3 assembly inhibited A3 ubiquitination but was not sufficient to restore its packaging into viral particles and antiviral activity. These observations establish that Vif can neutralize A3 family members in a degradation-independent manner. Additionally, this work highlights the potential of Fabs as functional probes, and illuminates how Vif uses a multi-pronged approach involving both degradation dependent and independent mechanisms to suppress A3 innate immunity.


Assuntos
Antivirais/farmacologia , Citosina Desaminase/metabolismo , Fragmentos Fab das Imunoglobulinas/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/imunologia , Desaminases APOBEC , Antivirais/química , Proteínas Culina/química , Proteínas Culina/metabolismo , Citidina Desaminase , Células HEK293 , Infecções por HIV/imunologia , Infecções por HIV/terapia , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/metabolismo , Humanos , Ubiquitina/metabolismo , Ubiquitinação , Montagem de Vírus , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química
10.
AIDS Res Hum Retroviruses ; 34(1): 31-38, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29226706

RESUMO

The study of natural products in biomedical research is not a modern concept. Many of the most successful medical therapeutics are derived from natural products, including those studied in the field of HIV/AIDS. Biomedical research has a rich history of discovery based on screens of medicinal herbs and traditional medicine practices. Compounds derived from natural products, which repress HIV and those that activate latent HIV, have been reported. It is important to remember the tradition in medical research to derive therapies based on these natural products and to overcome the negative perception of natural products as an "alternative medicine."


Assuntos
Fármacos Anti-HIV/farmacologia , Produtos Biológicos/farmacologia , HIV-1/efeitos dos fármacos , Fármacos Anti-HIV/química , Produtos Biológicos/química , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , Humanos , Plantas Medicinais/química , Latência Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
11.
J Virol ; 91(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28331090

RESUMO

P-element-induced wimpy-like (Piwil) proteins restrict the replication of mobile genetic elements in the germ line. They are also expressed in many transformed cell lines. In this study, we discovered that the human Piwil 2 (Hili) protein can also inhibit HIV replication, especially in activated CD4+ T cells that are the preferred target cells for this virus in the infected host. Although resting cells did not express Hili, its expression was rapidly induced following T cell activation. In these cells and transformed cell lines, depletion of Hili increased levels of viral proteins and new viral particles. Further studies revealed that Hili binds to tRNA. Some of the tRNAs represent rare tRNA species, whose codons are overrepresented in the viral genome. Targeting tRNAArg(UCU) with an antisense oligonucleotide replicated effects of Hili and also inhibited HIV replication. Finally, Hili also inhibited the retrotransposition of the endogenous intracysternal A particle (IAP) by a similar mechanism. Thus, Hili joins a list of host proteins that inhibit the replication of HIV and other mobile genetic elements.IMPORTANCE Piwil proteins inhibit the movement of mobile genetic elements in the germ line. In their absence, sperm does not form and male mice are sterile. This inhibition is thought to occur via small Piwi-interacting RNAs (piRNAs). However, in some species and in human somatic cells, Piwil proteins bind primarily to tRNA. In this report, we demonstrate that human Piwil proteins, especially Hili, not only bind to select tRNA species, including rare tRNAs, but also inhibit HIV replication. Importantly, T cell activation induces the expression of Hili in CD4+ T cells. Since Hili also inhibited the movement of an endogenous retrovirus (IAP), our finding shed new light on this intracellular resistance to exogenous and endogenous retroviruses as well as other mobile genetic elements.


Assuntos
Proteínas Argonautas/metabolismo , HIV-1/fisiologia , Ativação Linfocitária , Replicação Viral , Proteínas Argonautas/deficiência , Proteínas Argonautas/genética , Proteínas Argonautas/imunologia , Linhagem Celular , Retrovirus Endógenos/metabolismo , Células HEK293 , HIV-1/genética , Células HeLa , Humanos , Oligonucleotídeos Antissenso/genética , Ligação Proteica , RNA Interferente Pequeno/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência de Arginina/genética , RNA de Transferência de Arginina/metabolismo , Linfócitos T/virologia
12.
PLoS One ; 11(12): e0168027, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27977742

RESUMO

While highly active anti-retroviral therapy has greatly improved the lives of HIV infected individuals, these treatments are unable to eradicate the virus. Current approaches to reactivate the virus have been limited by toxicity, lack of an orally available therapy, and limited responses in primary CD4+ T cells and in clinical trials. The PKC agonist ingenol, purified from Euphorbia plants, is a potent T cell activator and reactivates latent HIV. Euphorbia kansui itself has been used for centuries in traditional Chinese medicine to treat ascites, fluid retention, and cancer. We demonstrate that an extract of this plant, Euphorbia kansui, is capable of recapitulating T cell activation induced by the purified ingenol. Indeed, Euphorbia kansui induced expression of the early T cell activation marker CD69 and P-TEFb in a dose-dependent manner. Furthermore, Euphorbia kansui reactivated latent HIV in a CD4+ T cell model of latency and in HIV+ HAART suppressed PBMC. When combined with the other latency reversing agents, the effective dose of Euphorbia kansui required to reactive HIV was reduced 10-fold and resulted in synergistic reactivation of latent HIV. We conclude that Euphorbia Euphorbia kansui reactivates latent HIV and activates CD4+ T cells. When used in combination with a latency reversing agent, the effective dose of Euphorbia kansui is reduced; which suggests its application as a combination strategy to reactivate latent HIV while limiting the toxicity due to global T cell activation. As a natural product, which has been used in traditional medicine for thousands of years, Euphorbia kansui is attractive as a potential treatment strategy, particularly in resource poor countries with limited treatment options. Further clinical testing will be required to determine its safety with current anti-retroviral therapies.


Assuntos
Euphorbia/química , Infecções por HIV/tratamento farmacológico , Latência Viral/efeitos dos fármacos , Adulto , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular , Células Cultivadas , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Sinergismo Farmacológico , Feminino , Citometria de Fluxo , Humanos , Masculino , Medicina Tradicional Chinesa/métodos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos
13.
J Biol Chem ; 291(34): 17953-63, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27365398

RESUMO

The autoimmune regulator (AIRE) is a transcription factor which is expressed in medullary thymic epithelial cells. It directs the expression of otherwise tissue-specific antigens, which leads to the elimination of autoreactive T cells during development. AIRE is modified post-translationally by phosphorylation and ubiquitylation. In this report we connected these modifications. AIRE, which is phosphorylated on two specific residues near its N terminus, then binds to the F-box protein 3 (FBXO3) E3 ubiquitin ligase. In turn, this SCF(FBXO3) (SKP1-CUL1-F box) complex ubiquitylates AIRE, increases its binding to the positive transcription elongation factor b (P-TEFb), and potentiates its transcriptional activity. Because P-TEFb is required for the transition from initiation to elongation of transcription, this interaction ensures proper expression of AIRE-responsive tissue-specific antigens in the thymus.


Assuntos
Proteínas F-Box/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Ubiquitinação/fisiologia , Animais , Proteínas F-Box/genética , Células HEK293 , Humanos , Camundongos , Fosforilação/fisiologia , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Domínios Proteicos , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Fatores de Transcrição/genética , Proteína AIRE
14.
Viruses ; 8(7)2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27399760

RESUMO

Nef proteins from all primate Lentiviruses, including the simian immunodeficiency virus of chimpanzees (SIVcpz), increase viral progeny infectivity. However, the function of Nef involved with the increase in viral infectivity is still not completely understood. Nonetheless, until now, studies investigating the functions of Nef from SIVcpz have been conducted in the context of the HIV-1 proviruses. In an attempt to investigate the role played by Nef during the replication cycle of an SIVcpz, a Nef-defective derivative was obtained from the SIVcpzWTGab2 clone by introducing a frame shift mutation at a unique restriction site within the nef sequence. This nef-deleted clone expresses an N-terminal 74-amino acid truncated peptide of Nef and was named SIVcpz-tNef. We found that the SIVcpz-tNef does not behave as a classic nef-deleted HIV-1 or simian immunodeficiency virus of macaques SIVmac. Markedly, SIVcpz-tNef progeny from both Hek-293T and Molt producer cells were completely non-infectious. Moreover, the loss in infectivity of SIVcpz-tNef correlated with the inhibition of Gag and GagPol processing. A marked accumulation of Gag and very low levels of reverse transcriptase were detected in viral lysates. Furthermore, these observations were reproduced once the tNef peptide was expressed in trans both in SIVcpzΔNef and HIV-1WT expressing cells, demonstrating that the truncated peptide is a dominant negative for viral processing and infectivity for both SIVcpz and HIV-1. We demonstrated that the truncated Nef peptide binds to GagPol outside the protease region and by doing so probably blocks processing of both GagPol and Gag precursors at a very early stage. This study demonstrates for the first time that naturally-occurring Nef peptides can potently block lentiviral processing and infectivity.


Assuntos
Produtos do Gene nef/metabolismo , HIV-1/fisiologia , Vírus da Imunodeficiência Símia/fisiologia , Replicação Viral , Animais , Linhagem Celular , Mutação da Fase de Leitura , Técnicas de Inativação de Genes , Produtos do Gene gag/metabolismo , Produtos do Gene nef/genética , Produtos do Gene pol/metabolismo , Humanos , Pan troglodytes , Ligação Proteica , Vírus da Imunodeficiência Símia/genética
15.
F1000Res ; 52016.
Artigo em Inglês | MEDLINE | ID: mdl-27303638

RESUMO

While highly active anti-retroviral therapy has greatly improved the lives of HIV-infected individuals, current treatments are unable to completely eradicate the virus. This is due to the presence of HIV latently infected cells which harbor transcriptionally silent HIV. Latent HIV does not replicate or produce viral proteins, thereby preventing efficient targeting by anti-retroviral drugs. Strategies to target the HIV latent reservoir include viral reactivation, enhancing host defense mechanisms, keeping latent HIV silent, and using gene therapy techniques to knock out or reactivate latent HIV. While research into each of these areas has yielded promising results, currently no one mechanism eradicates latent HIV. Instead, combinations of these approaches should be considered for a potential HIV functional cure.

16.
Mol Cell ; 62(1): 34-46, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27058786

RESUMO

Studying cancer metabolism gives insight into tumorigenic survival mechanisms and susceptibilities. In melanoma, we identify HEXIM1, a transcription elongation regulator, as a melanoma tumor suppressor that responds to nucleotide stress. HEXIM1 expression is low in melanoma. Its overexpression in a zebrafish melanoma model suppresses cancer formation, while its inactivation accelerates tumor onset in vivo. Knockdown of HEXIM1 rescues zebrafish neural crest defects and human melanoma proliferation defects that arise from nucleotide depletion. Under nucleotide stress, HEXIM1 is induced to form an inhibitory complex with P-TEFb, the kinase that initiates transcription elongation, to inhibit elongation at tumorigenic genes. The resulting alteration in gene expression also causes anti-tumorigenic RNAs to bind to and be stabilized by HEXIM1. HEXIM1 plays an important role in inhibiting cancer cell-specific gene transcription while also facilitating anti-cancer gene expression. Our study reveals an important role for HEXIM1 in coupling nucleotide metabolism with transcriptional regulation in melanoma.


Assuntos
Melanoma/metabolismo , Fator B de Elongação Transcricional Positiva/genética , Pirimidinas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , Melanoma/patologia , Melanoma Experimental , Proteínas Oncogênicas/genética , Fatores de Transcrição , Transcrição Gênica , Proteínas Supressoras de Tumor/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
J Clin Invest ; 126(2): 448-54, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26731470

RESUMO

HIV seeds reservoirs of latent proviruses in the earliest phases of infection. These reservoirs are found in many sites, including circulating cells, the lymphoid system, the brain, and other tissues. The "shock and kill" strategy, where HIV transcription is reactivated so that antiretroviral therapy and the immune system clear the infection, has been proposed as one approach to curing AIDS. In addition to many defective viruses, resting hematopoietic cells harbor transcriptionally latent HIV. Understanding basic mechanisms of HIV gene expression provides a road map for this strategy, allowing for manipulation of critical cellular and viral transcription factors in such a way as to maximize HIV gene expression while avoiding global T cell activation. These transcription factors include NF-κB and the HIV transactivator of transcription (Tat) as well as the cyclin-dependent kinases CDK13 and CDK11 and positive transcription elongation factor b (P-TEFb). Possible therapies involve agents that activate these proteins or release P-TEFb from the inactive 7SK small nuclear ribonucleoprotein (snRNP). These proposed therapies include PKC and MAPK agonists as well as histone deacetylase inhibitors (HDACis) and bromodomain and extraterminal (BET) bromodomain inhibitors (BETis), which act synergistically to reactivate HIV in latently infected cells.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Infecções por HIV/metabolismo , HIV-1/fisiologia , Latência Viral/fisiologia , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Latência Viral/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
18.
Cell Host Microbe ; 18(5): 560-70, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26567509

RESUMO

Transcriptional cyclin-dependent kinases play important roles in eukaryotic gene expression. CDK7, CDK9 (P-TEFb), and CDK13 are also critical for HIV replication. However, the function of CDK11 remained enigmatic. In this report, we determined that CDK11 regulates the cleavage and polyadenylation (CPA) of all viral transcripts. CDK11 was found associated with the TREX/THOC, which recruited this kinase to DNA. Once at the viral genome, CDK11 phosphorylated serines at position 2 in the CTD of RNAPII, which increased levels of CPA factors at the HIV 3' end. In its absence, cleavage of viral transcripts was greatly attenuated. In contrast, higher levels of CDK11 increased the length of HIV poly(A) tails and the stability of mature viral transcripts. We conclude that CDK11 plays a critical role for the cotranscriptional processing of all HIV mRNA species.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/genética , Exodesoxirribonucleases/metabolismo , HIV/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Processamento de Terminações 3' de RNA , Proteínas de Ligação a DNA , Células HEK293 , Células HeLa , Humanos , Células Jurkat , Fosforilação , Poliadenilação , Proteínas de Ligação a RNA
19.
PLoS Pathog ; 11(7): e1005063, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26225566

RESUMO

The persistence of latently infected cells in patients under combinatory antiretroviral therapy (cART) is a major hurdle to HIV-1 eradication. Strategies to purge these reservoirs are needed and activation of viral gene expression in latently infected cells is one promising strategy. Bromodomain and Extraterminal (BET) bromodomain inhibitors (BETi) are compounds able to reactivate latent proviruses in a positive transcription elongation factor b (P-TEFb)-dependent manner. In this study, we tested the reactivation potential of protein kinase C (PKC) agonists (prostratin, bryostatin-1 and ingenol-B), which are known to activate NF-κB signaling pathway as well as P-TEFb, used alone or in combination with P-TEFb-releasing agents (HMBA and BETi (JQ1, I-BET, I-BET151)). Using in vitro HIV-1 post-integration latency model cell lines of T-lymphoid and myeloid lineages, we demonstrated that PKC agonists and P-TEFb-releasing agents alone acted as potent latency-reversing agents (LRAs) and that their combinations led to synergistic activation of HIV-1 expression at the viral mRNA and protein levels. Mechanistically, combined treatments led to higher activations of P-TEFb and NF-κB than the corresponding individual drug treatments. Importantly, we observed in ex vivo cultures of CD8+-depleted PBMCs from 35 cART-treated HIV-1+ aviremic patients that the percentage of reactivated cultures following combinatory bryostatin-1+JQ1 treatment was identical to the percentage observed with anti-CD3+anti-CD28 antibodies positive control stimulation. Remarkably, in ex vivo cultures of resting CD4+ T cells isolated from 15 HIV-1+ cART-treated aviremic patients, the combinations bryostatin-1+JQ1 and ingenol-B+JQ1 released infectious viruses to levels similar to that obtained with the positive control stimulation. The potent effects of these two combination treatments were already detected 24 hours post-stimulation. These results constitute the first demonstration of LRA combinations exhibiting such a potent effect and represent a proof-of-concept for the co-administration of two different types of LRAs as a potential strategy to reduce the size of the latent HIV-1 reservoirs.


Assuntos
Briostatinas/farmacologia , Linfócitos T CD4-Positivos/virologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , HIV-1/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Diterpenos/metabolismo , HIV-1/fisiologia , Humanos , Fator B de Elongação Transcricional Positiva/metabolismo , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos
20.
Mol Cell Biol ; 35(2): 468-78, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25384976

RESUMO

Transcriptional cyclin-dependent kinases (CDKs) regulate RNA polymerase II initiation and elongation as well as cotranscriptional mRNA processing. In this report, we describe an important role for CDK12 in the epidermal growth factor (EGF)-induced c-FOS proto-oncogene expression in mammalian cells. This kinase was found in the exon junction complexes (EJC) together with SR proteins and was thus recruited to RNA polymerase II. In cells depleted of CDK12 or eukaryotic translation initiation factor 4A3 (eIF4A3) from the EJC, EGF induced fewer c-FOS transcripts. In these cells, phosphorylation of serines at position 2 in the C-terminal domain (CTD) of RNA polymerase II, as well as levels of cleavage-stimulating factor 64 (Cstf64) and 73-kDa subunit of cleavage and polyadenylation specificity factor (CPSF73), was reduced at the c-FOS gene. These effects impaired 3' end processing of c-FOS transcripts. Mutant CDK12 proteins lacking their Arg-Ser-rich (RS) domain or just the RS domain alone acted as dominant negative proteins. Thus, CDK12 plays an important role in cotranscriptional processing of c-FOS transcripts.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , Quinases Ciclina-Dependentes/genética , Humanos , Fosforilação , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-fos/genética , Ativação Transcricional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA