Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 9(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34960175

RESUMO

In Alberta, infectious laryngotracheitis virus (ILTV) infection is endemic in backyard poultry flocks; however, outbreaks are only sporadically observed in commercial flocks. In addition to ILTV vaccine revertant strains, wild-type strains are among the most common causes of infectious laryngotracheitis (ILT). Given the surge in live attenuated vaccine-related outbreaks, the goal of this study was to assess the efficacy of a recombinant herpesvirus of turkey (rHVT-LT) vaccine against a genotype VI Canadian wild-type ILTV infection. One-day-old specific pathogen-free (SPF) White Leghorn chickens were vaccinated with the rHVT-LT vaccine or mock vaccinated. At three weeks of age, half of the vaccinated and the mock-vaccinated animals were challenged. Throughout the experiment, weights were recorded, and feather tips, cloacal and oropharyngeal swabs were collected for ILTV genome quantification. Blood was collected to isolate peripheral blood mononuclear cells (PBMC) and quantify CD4+ and CD8+ T cells. At 14 dpi, the chickens were euthanized, and respiratory tissues were collected to quantify genome loads and histological examination. Results showed that the vaccine failed to decrease the clinical signs at 6 days post-infection. However, it was able to significantly reduce ILTV shedding through the oropharyngeal route. Overall, rHVT-LT produced a partial protection against genotype VI ILTV infection.

2.
Viruses ; 13(4)2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805117

RESUMO

Infectious laryngotracheitis (ILT) is an infectious upper respiratory tract disease that impacts the poultry industry worldwide. ILT is caused by an alphaherpesvirus commonly referred to as infectious laryngotracheitis virus (ILTV). Vaccination with live attenuated vaccines is practiced regularly for the control of ILT. However, extensive and improper use of live attenuated vaccines is related to vaccine viruses reverting to virulence. An increase in mortality and pathogenicity has been attributed to these vaccine revertant viruses. Recent studies characterized Canadian ILTV strains originating from ILT outbreaks as related to live attenuated vaccine virus revertants. However, information is scarce on the pathogenicity and transmission potential of these Canadian isolates. Hence, in this study, the pathogenicity and transmission potential of two wildtype ILTVs and a chicken embryo origin (CEO) vaccine revertant ILTV of Canadian origin were evaluated. To this end, 3-week-old specific pathogen-free chickens were experimentally infected with each of the ILTV isolates and compared to uninfected controls. Additionally, naïve chickens were exposed to the experimentally infected chickens to mimic naturally occurring infection. Pathogenicity of each of these ILTV isolates was evaluated by the severity of clinical signs, weight loss, mortality, and lesions observed at the necropsy. The transmission potential was evaluated by quantification of ILTV genome loads in oropharyngeal and cloacal swabs and tissue samples of the experimentally infected and contact-exposed chickens, as well as in the capacity to produce ILT in contact-exposed chickens. We observed that the CEO vaccine revertant ILTV isolate induced severe disease in comparison to the two wildtype ILTV isolates used in this study. According to ILTV genome load data, CEO vaccine revertant ILTV isolate was successfully transmitted to naïve contact-exposed chickens in comparison to the tested wildtype ILTV isolates. Overall, the Canadian origin CEO vaccine revertant ILTV isolate possesses higher virulence, and dissemination potential, when compared to the wildtype ILTV isolates used in this study. These findings have serious implications in ILT control in chickens.


Assuntos
Infecções por Herpesviridae/transmissão , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/genética , Herpesvirus Galináceo 1/patogenicidade , Doenças das Aves Domésticas/transmissão , Vacinas Virais/análise , Animais , Canadá , Células Cultivadas , Embrião de Galinha , Galinhas/virologia , Surtos de Doenças , Infecções por Herpesviridae/virologia , Herpesvirus Galináceo 1/isolamento & purificação , Fígado/citologia , Doenças das Aves Domésticas/virologia , Organismos Livres de Patógenos Específicos , Vacinas Atenuadas/análise , Virulência
3.
Viruses ; 12(11)2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198373

RESUMO

Infectious laryngotracheitis virus (ILTV) is a herpes virus that causes an acute respiratory disease of poultry known as infectious laryngotracheitis (ILT). Chicken embryo origin (CEO) and tissue culture origin (TCO) live attenuated vaccines are routinely used for the control of ILT. However, vaccine virus is known to revert to virulence, and it has been recently shown that ILT field viral strains can undergo recombination with vaccinal ILTV and such recombinant ILT viruses possess greater transmission and pathogenicity potential. Based on complete or partial genes of the ILTV genome, few studies genotyped ILTV strains circulating in Canada, and so far, information is scarce on whole-genome sequencing or the presence of recombination in Canadian ILTV isolates. The objective of this study was to genetically characterize the 14 ILTV isolates that originated from three provinces in Canada (Alberta, British Columbia and Quebec). To this end, a phylogenetic analysis of 50 ILTV complete genome sequences, including 14 sequences of Canadian origin, was carried out. Additional phylogenetic analysis of the unique long, unique short and inverted repeat regions of the ILTV genome was also performed. We observed that 71%, 21% and 7% of the ILTV isolates were categorized as CEO revertant, wild-type and TCO vaccine-related, respectively. The sequences were also analyzed for potential recombination events, which included evidence in the British Columbia ILTV isolate. This event involved two ILTV vaccine (CEO) strains as parental strains. Recombination analysis also identified that one ILTV isolate from Alberta as a potential parental strain for a United States origin ILTV isolate. The positions of the possible recombination breakpoints were identified. These results indicate that the ILTV wild-type strains can recombine with vaccinal strains complicating vaccine-mediated control of ILT. Further studies on the pathogenicity of these ILTV strains, including the recombinant ILTV isolate are currently ongoing.


Assuntos
Genoma Viral , Genômica , Herpesvirus Galináceo 1/fisiologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/virologia , Animais , Canadá/epidemiologia , DNA Viral , Genômica/métodos , Herpesvirus Galináceo 1/isolamento & purificação , Humanos , Lactente , Mutação , Filogenia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/transmissão , Recombinação Genética , Vacinas Virais/imunologia , Sequenciamento Completo do Genoma
4.
Animals (Basel) ; 10(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932922

RESUMO

Infectious laryngotracheitis virus (ILTV) causes an acute upper respiratory disease in chickens called infectious laryngotracheitis (ILT). Live attenuated vaccines are effective in disease control; however, they have residual virulence, which makes them able to replicate, cause disease and revert to the original virulent form. Information is scarce on the molecular nature of ILTV that is linked to ILT in Canada. This study aims to determine whether isolates originating from ILT cases in Western Canada are a wild type or vaccine origin. Samples submitted for the diagnosis of ILT between 2009-2018 were obtained from Alberta (AB, n = 46) and British Columbia (BC, n = 9). For genotyping, a Sanger sequencing of open reading frame (ORF) a and b was used. A total of 27 from AB, and 5 from BC samples yielded a fragment of 1751 base pairs (bp). Three of the BC samples classified as group IV (CEO vaccine strains) and 2 as group V (CEO revertant). Of the AB samples, 22 samples clustered with group V, 3 with group VI (wild type), and 2 with group VII, VIII, and IX (wild type). Overall, 17 non-synonymous single nucleotide polymorphisms (SNPs) were detected. Further studies are underway to ascertain the virulence and transmission potential of these isolates.

5.
Microorganisms ; 8(2)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093326

RESUMO

Over a two-year period, Mannheimia haemolytica (MH; n = 113), Pasteurella multocida (PM; n = 47), Histophilus somni (HS; n = 41) and Mycoplasma bovis (MB; n = 227) were isolated from bovine lung tissue at necropsy from cattle raised conventionally (CON, n = 29 feedlots) or without antimicrobials [natural (NAT), n = 2 feedlots]. Excluding MB, isolates were assayed by PCR to detect the presence of 13 antimicrobial resistance (AMR) genes and five core genes associated with integrative and conjugative elements (ICEs). Antimicrobial susceptibility phenotypes and minimum inhibitory concentrations (MICs, µg/mL) were determined for a subset of isolates (MH, n = 104; PM, n = 45; HS, n = 23; and MB, n = 61) using Sensititre analyses. A subset of isolates (n = 21) was also evaluated by whole-genome sequencing (WGS) based on variation in AMR phenotype. All five ICE core genes were detected in PM and HS by PCR, but only 3/5 were present in MH. Presence of mco and tnpA ICE core genes in MH was associated with higher MICs (p < 0.05) for all tetracyclines, and 2/3 of all macrolides, aminoglycosides and fluoroquinolones evaluated. In contrast, association of ICE core genes with MICs was largely restricted to macrolides for PM and to individual tetracyclines and macrolides for HS. For MH, the average number of AMR genes markedly increased (p < 0.05) in year 2 of the study due to the emergence of a strain that was PCR positive for all 13 PCR-tested AMR genes as well as two additional AMR genes (aadA31 and blaROB-1) detected by WGS. Conventional management of cattle increased (p < 0.05) MICs of tilmicosin and tulathromycin for MH; neomycin and spectinomycin for PM; and gamithromycin and tulathromycin for MB. The average number of PCR-detected AMR genes in PM was also increased (p < 0.05) in CON mortalities. This study demonstrates increased AMR especially to macrolides by bovine respiratory disease organisms in CON as compared to NAT feedlots and a rapid increase in AMR following dissemination of strain(s) carrying ICE-associated multidrug resistance.

6.
Can Vet J ; 59(11): 1195-1201, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30410176

RESUMO

The objectives of this study were to describe the antimicrobial susceptibility and serotypes of clinical Salmonella spp. isolates from Alberta cattle, to inform antimicrobial stewardship decisions for Alberta bovine veterinarians and to provide data for national surveillance. Isolates were collected from cattle and serotyped by Alberta Agriculture and Forestry from 2006 to 2014. Susceptibility testing was completed using Canadian surveillance breakpoints. There were 81 unique Salmonella isolates from 72 visits to 27 farms. The majority of isolates were S. Typhimurium (66.7%) and S. Dublin (19.8%). The prevalence of multidrug resistance was high in S. Typhimurium (89.1%) and S. Dublin (93.8%), including ceftiofur resistance (43.6% and 68.8%, respectively), while there was no resistance in other serotypes. As ceftiofur is a recommended treatment option for enteritis and septicemia caused by Salmonella in cattle, these results reinforce that obtaining bacterial culture and susceptibility results is critical for suspected cases of bovine salmonellosis in Alberta.


Antibiorésistance des isolats bovins de Salmonella enterica ssp. enterica provenant du Programme d'enquête du ministère de l'Agriculture et des Forêts de l'Alberta (2006­2014). Les objectifs de cette étude consistaient à décrire la susceptibilité antimicrobienne et les sérotypes des isolats cliniques de Salmonella spp. provenant du bétail de l'Alberta afin de fournir des données nationales de surveillance et d'informer les décisions d'antibiogouvernance des vétérinaires bovins de l'Alberta. Les isolats ont été prélevés du bétail et sérotypés par le ministère de l'Agriculture et des Forêts de l'Alberta de 2006 à 2014. Les tests de susceptibilité ont été réalisés en utilisant des points de référence de la surveillance canadienne. Il y avait 81 isolats uniques de Salmonella provenant de 72 visites à 27 fermes. La majorité des isolats étaient S. Typhimurium (66,7 %) et S. Dublin (19,8 %). La prévalence de la multirésistance aux médicaments était élevée pour S. Typhimurium (89,1 %) et S. Dublin (93,8 %), y compris la résistance au ceftiofur (43,6 % et 68,8 %, respectivement), tandis qu'il n'y avait pas de résistance pour d'autres sérotypes. Vu que le ceftiofur est une option de traitement recommandée pour l'entérite et la septicémie causées par Salmonella chez le bétail, ces résultats servent de renforcement pour confirmer qu'il est crucial d'obtenir des cultures bactériennes et des résultats de susceptibilité pour les cas suspectés de salmonellose bovine en Alberta.(Traduit par Isabelle Vallières).


Assuntos
Antibacterianos/uso terapêutico , Doenças dos Bovinos/microbiologia , Farmacorresistência Bacteriana Múltipla , Salmonella/efeitos dos fármacos , Alberta/epidemiologia , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Salmonella/classificação
7.
Front Vet Sci ; 4: 207, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29255716

RESUMO

Bovine respiratory disease (BRD) is the most important illness of feedlot cattle. Disease management targets the associated bacterial pathogens, Mannheimia haemolytica, Mycoplasma bovis, Pasteurella multocida, Histophilus somni, and Trueperella pyogenes. We conducted a cross-sectional study to measure the frequencies of antimicrobial-resistant BRD pathogens using a collaborative network of veterinarians, industry, government, and a diagnostic laboratory. Seven private veterinary practices in southern Alberta collected samples from both living and dead BRD-affected animals at commercial feedlots. Susceptibility testing of 745 isolates showed that 100% of the M. haemolytica, M. bovis, P. multocida, and T. pyogenes isolates and 66.7% of the H. somni isolates were resistant to at least one antimicrobial class. Resistance to macrolide antimicrobials (90.2% of all isolates) was notable for their importance to beef production and human medicine. Multidrug resistance (MDR) was high in all target pathogens with 47.2% of the isolates resistant to four or five antimicrobial classes and 24.0% resistance to six to nine classes. We compared the MDR profiles of isolates from two feedlots serviced by different veterinary practices. Differences in the average number of resistant classes were found for M. haemolytica (p < 0.001) and P. multocida (p = 0.002). Compared to previous studies, this study suggests an increasing trend of resistance in BRD pathogens against the antimicrobials used to manage the disease in Alberta. For the veterinary clinician, the results emphasize the importance of ongoing susceptibility testing of BRD pathogens to inform treatment protocols. Surveillance studies that collect additional epidemiological information and manage sampling bias will be necessary to develop strategies to limit the spread of resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA