Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
Neurosci Biobehav Rev ; 165: 105847, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39117131

RESUMO

Lesch-Nyhan Disease (LND) is an X-linked recessive genetic disorder arising from hypoxanthine phosphoribosyltransferase 1 gene mutations, leading to a complete deficiency. LND presents a complex neurological profile characterized by generalized dystonia, motor dysfunctions and self-injurious behavior, which management is challenging. We conducted a systematic review of studies assessing the efficacy of pharmacological and non-pharmacological interventions in management of neurological symptoms in LND (PROSPERO registration number:CRD42023446513). Among 34 reviewed full-text papers; 22 studies were rated as having a high risk of bias. Considerable heterogeneity was found in studies regarding the timing of treatment implementation, adjunctive treatments and outcome assessment. Single-patient studies and clinical trials often showed contradictory results, while therapeutic failures were underreported. S-Adenosylmethionine and Deep Brain Stimulation were the most studied treatment methods and require further research to address inconsistencies. The evidence from levodopa studies underlines that optimal timing of treatment implementation should be thoroughly investigated. Standardized study design and reducing publication bias are crucial to overcome current limitations of assessing intervention efficacy in LND.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39087693

RESUMO

Aberrant metabolism of purines and pyrimidines led to development of drugs for treatment of various diseases, such as inflammatory, neurological, cardiovascular, viral infections and cancer. Purine and Pyrimidine Symposia are characterized by close interactions, leading to extensive cross-fertilization on methodology and translating not only from bench-to-bedside, but also between various disciplines such as medicinal chemistry, pharmacology, oncology, virology, rheumatology, biochemistry, pediatrics, cardiology, surgery and immunology. This background was fundamental in our studies on how to optimize application of existing drugs (5-fluorouracil [5FU], thiopurines, antifolates such as methotrexate) but also to support development of novel drugs such as gemcitabine, novel antifolates, S-1, TAS-102 and fluorocyclopentenylcytosine. Knowledge of their metabolism helped to design rational combinations such as of gemcitabine with cisplatin, one of the most widely used drug combinations for various cancers. The combination of 5FU with uridine, led to the development of triacetyluridine registered for emergency treatment of patients with lethal 5FU toxicity. Mechanisms of action were studied by careful analysis of their metabolism, using classical enzyme assays with radioactive precursors and HPLC analysis. Drug metabolism moved from manually operated HPLC systems with UV-detection for peak identification and paper rolls for quantification, to computer-operated HPLC with automatic multi-wavelength and fluorometric peak detection and more recently to ultrasensitive, highly specific mass-spectrometry-based systems. Some aspects, however, never changed; careful analysis of the results and being prepared for the unexpected. The latter actually led to the most interesting results. Investigation of (nucleoside/nucleotide) metabolism remains an exciting field of research.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39037350

RESUMO

The expression of both lactate dehydrogenase A (LDH-A) and glucose transporter type 1 (GLUT1) is high in pancreatic, thoracic and many other types of cancer. GLUT1 is also highly expressed in endothelial cells (EC), that play an important role in tumor metastasis. We investigated the effect of inhibition of LDH-A by NHI-2 and GLUT1 by PGL14 on cellular migration, a hallmark of metastasis, in relation to changes in intracellular purine nucleotide and nicotinamide adenine dinucleotide pools in a human microvascular endothelial cell line (HMEC-1). HMEC-1 were treated with NHI-2 and PGL14 alone or in combination. Cell migration was tested by the wound healing assay. The intracellular purine nucleotides and NAD+/NADH concentrations were measured using Reversed-Phase High Performance Liquid Chromatography (RP-HPLC). Both NHI-2 at 15 µM and 45 µM and PGL14 at 10 µM and 30 µM inhibited migration by 5 to 28% while the combination led to 46% inhibition. The drugs also decreased intracellular nucleotide pools, but only 45 µM NHI-2 altered energy charge and redox status in HMEC-1 cells. Inhibitors of glycolysis attenuated migration and the energy charge of EC and support further development of LDH-A and GLUT1 inhibitors to target cancer aggressiveness and metastasis.

5.
Cancer Drug Resist ; 7: 12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835345

RESUMO

Aim: The therapeutic targeting of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) death receptors in cancer, including non-small cell lung cancer (NSCLC), is a widely studied approach for tumor selective apoptotic cell death therapy. However, apoptosis resistance is often encountered. The main aim of this study was to investigate the apoptotic mechanism underlying TRAIL sensitivity in three bortezomib (BTZ)-resistant NSCLC variants, combining induction of both the intrinsic and extrinsic pathways. Methods: Sensitivity to TRAIL in BTZ-resistant variants was determined using a tetrazolium (MTT) and a clonogenic assay. A RT-qPCR profiling mRNA array was used to determine apoptosis pathway-specific gene expression. The expression of these proteins was determined through ELISA assays and western Blotting, while apoptosis (sub-G1) and cytokine expression were determined using flow cytometry. Apoptotic genes were silenced by specific siRNAs. Lipid rafts were isolated with fractional ultracentrifugation. Results: A549BTZR (BTZ-resistant) cells were sensitive to TRAIL in contrast to parental A549 cells, which are resistant to TRAIL. TRAIL-sensitive H460 cells remained equally sensitive for TRAIL as H460BTZR. In A549BTZR cells, we identified an increased mRNA expression of TNFRSF11B [osteoprotegerin (OPG)] and caspase-1, -4 and -5 mRNAs involved in cytokine activation and immunogenic cell death. Although the OPG, interleukin-6 (IL-6), and interleukin-8 (IL-8) protein levels were markedly enhanced (122-, 103-, and 11-fold, respectively) in the A549BTZR cells, this was not sufficient to trigger TRAIL-induced apoptosis in the parental A549 cells. Regarding the extrinsic apoptotic pathway, the A549BTZR cells showed TRAIL-R1-dependent TRAIL sensitivity. The shift of TRAIL-R1 from non-lipid into lipid rafts enhanced TRAIL-induced apoptosis. In the intrinsic apoptotic pathway, a strong increase in the mRNA and protein levels of the anti-apoptotic myeloid leukemia cell differentiation protein (Mcl-1) and B-cell leukemia/lymphoma 2 (Bcl-2) was found, whereas the B-cell lymphoma-extra large (Bcl-xL) expression was reduced. However, the stable overexpression of Bcl-xL in the A549BTZR cells did not reverse the TRAIL sensitivity in the A549BTZR cells, but silencing of the BH3 Interacting Domain Death Agonist (BID) protein demonstrated the importance of the intrinsic apoptotic pathway, regardless of Bcl-xL. Conclusion: In summary, increased sensitivity to TRAIL-R1 seems predominantly related to the relocalization into lipid rafts and increased extrinsic and intrinsic apoptotic pathways.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38898808

RESUMO

OBJECTIVES: Lactate dehydrogenase A (LDH-A) catalyzes the last step of glycolysis: supplying cells rapidly but inefficiently with ATP. Many tumors, including malignant mesothelioma (MM), have a high expression of LDH-A, which is associated with cancer aggressiveness. We aimed to determine whether the efficacy of the gemcitabine/carboplatin (Gem + Carbo) combination, widely used to treat this disease, could be increased by inhibition of LDH-A (by NHI-2). To this aim, we analyzed the growth inhibition of pleural and peritoneal MM by multiple combinations. METHODS: The 72 h sulforhodamine B assay (SRB) was used to test the cytotoxicity of the combination of gemcitabine (in the range 0.1 - 400 nM) and carboplatin (0.01 - 40 µM) with a fixed concentration of NHI-2 (at IC25). We used pleural (H2452) and primary peritoneal (STO, MESO-II) MM cell lines, cultured at normoxic conditions. RESULTS: NHI-2 did not increase the cytotoxicity of the combination of 100 nM gemcitabine and 10 µM carboplatin in peritoneal MM cell lines. The cell growth inhibition was 10% smaller after the triple combination than the Gem + Carbo treatment. CONCLUSIONS: Inhibition of LDH-A did not increase the efficacy of gemcitabine and carboplatin in MM under normoxic conditions.

7.
Int J Biol Sci ; 20(8): 3173-3184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904016

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) poses significant challenges in terms of prognosis and treatment. Recent research has identified splicing deregulation as a new cancer hallmark. Herein, we investigated the largely uncharacterized alternative splicing profile and the key splicing factor SF3B1 in PDAC pancreatic cells and tissues as a potential discovery source of plausible drug targets and new predictive biomarkers of clinical outcome. The research involved a transcriptome-wide analysis, comparing profiles of splicing profiles in PDAC primary cells with normal ductal cells. This revealed more than 400 significant differential splicing events in genes involved in regulation of gene expression, primarily related to mRNA splicing, and metabolism of nucleic acids. PDAC cultures were highly sensitive to the SF3B1 modulators, E7107 and Pladienolide-B, showing IC50s in the low nanomolar range. These compounds induced apoptosis, associated to induction of the MCL-1/S splice variant. and reduced cell migration, associated to RON mis-splicing. In an orthotopic mouse model, E7107 showed promising results. Furthermore, we evaluated SF3B1 expression in specimens from 87 patients and found a significant association of SF3B1 expression with progression-free and overall survival. In conclusion, SF3B1 emerges as both a potential prognostic factor and therapeutic target in PDAC, impacting cell proliferation, migration, and apoptosis. These findings warrant future studies on this new therapeutic strategy against PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Fatores de Processamento de RNA , Humanos , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Camundongos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Compostos de Epóxi/farmacologia , Compostos de Epóxi/uso terapêutico , Prognóstico , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Macrolídeos/uso terapêutico , Macrolídeos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Splicing de RNA , Processamento Alternativo , Feminino , Movimento Celular/genética
8.
Drug Dev Res ; 85(4): e22212, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38798193

RESUMO

AKT is one of the overexpressed targets in nonsmall cell lung cancer (NSCLC) and plays an important role in its progression and offers an attractive target for the therapy. The PI3K/AKT/mTOR pathway is upregulated in NSCLC. Acridone is an important heterocycle compound which treats cancer through various mechanisms including AKT as a target. In the present work, the study was designed to evaluate the safety profile of three acridone derivatives (AC-2, AC-7, and AC-26) by acute and repeated dose oral toxicity. In addition to this, we also checked the pAKT overexpression and its control by these derivatives in tumor xenograft model. The results from acute and repeated dose toxicity showed these compounds to be highly safe and free from any toxicity, mortality, or significant alteration in body weight, food, and water intake in the rats. In the repeated dose toxicity, compounds showed negligible variations in a few hematological parameters at 400 mg/kg. The histopathology, biochemical, and urine parameters remained unchanged. The xenograft model study demonstrated AC-2 to be inhibiting HOP-62 induced tumor via reduction in p-AKT1 (Ser473) expression significantly. In immunofluorescence staining AC-2 treated tissue section showed 2.5 fold reduction in the expression of p-AKT1 (Ser473). Histopathology studies showed the destruction of tumor cells with increased necrosis after treatment. The study concluded that AC-2 causes cell necrosis in tumor cells via blocking the p-AKT1 expression. The findings may provide a strong basis for further clinical applications of acridone derivatives in NSCLC.


Assuntos
Acridonas , Antineoplásicos , Neoplasias Pulmonares , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Acridonas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Humanos , Masculino , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Camundongos Nus , Linhagem Celular Tumoral , Ratos Sprague-Dawley , Feminino
9.
Artigo em Inglês | MEDLINE | ID: mdl-38741480

RESUMO

Molnupiravir, an orally administered prodrug of ß-d-N4-hydroxycytidine (NHC), is incorporated into newly synthesized RNA by viral RNA-dependent RNA polymerase (RdRp). It is used for treatment of SARS-CoV-2 infections. Incorporation of NHC triphosphate into viral RNA inhibits replication of the virus, at least in part by introducing deleterious mutations. However, there is limited information on NHC incorporation into host RNA and reports on the risk of mutagenicity that molnupiravir/NHC pose to the host are conflicting. We used two liquid chromatography-mass spectrometry (LC-MS) methods to evaluate the incorporation of NHC into RNA and DNA of host Vero E6 cells in a SARS-CoV-2 infection model. To test this, host and viral RNA were degraded to their ribonucleosides, while host DNA was degraded to deoxyribonucleosides. Subsequently, nucleic acid constituents were analyzed by LC-MS, which offers specific, direct, and quantitative determination of incorporation. Our findings revealed concentration dependent NHC incorporation into host cell RNA in both infected and uninfected cell cultures, reaching a maximum of 1 in 7,093 bases. Analysis of host DNA revealed no presence of deoxy-N4-hydroxycytidine down to a detection limit of 1 in 133,000 bases. Our findings therefore suggest minimal to no NHC incorporation into host DNA, indicating a low probability of significant host cell mutagenicity associated with its use.

10.
Genes (Basel) ; 15(4)2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38674408

RESUMO

Colorectal cancer (CRC) imposes a significant healthcare burden globally, prompting the quest for innovative biomarkers to enhance diagnostic and therapeutic strategies. This study investigates the G-protein signaling modulator (GPSM) family across several cancers and presents a comprehensive pan-cancer analysis of the GPSM2 gene across several gastrointestinal (GI) cancers. Leveraging bioinformatics methodologies, we investigated GPSM2 expression patterns, protein interactions, functional enrichments, prognostic implications, genetic alterations, and immune infiltration associations. Furthermore, the expression of the GPSM2 gene was analyzed using real-time analysis. Our findings reveal a consistent upregulation of GPSM2 expression in all GI cancer datasets analyzed, suggesting its potential as a universal biomarker in GI cancers. Functional enrichment analysis underscores the involvement of GPSM2 in vital pathways, indicating its role in tumor progression. The prognostic assessment indicates that elevated GPSM2 expression correlates with adverse overall and disease-free survival outcomes across multiple GI cancer types. Genetic alteration analysis highlights the prevalence of mutations, particularly missense mutations, in GPSM2. Furthermore, significant correlations between GPSM2 expression and immune cell infiltration are observed, suggesting its involvement in tumor immune evasion mechanisms. Collectively, our study underscores the multifaceted role of GPSM2 in GI cancers, particularly in CRC, emphasizing its potential as a promising biomarker for prognosis and therapeutic targeting. Further functional investigations are warranted to elucidate its clinical utility and therapeutic implications in CRC management.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Humanos , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Prognóstico , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-38619266

RESUMO

OBJECTIVES: Nucleoside analogs such as gemcitabine (GEM; dFdC) and cytarabine (Ara-C) require nucleoside transporters to enter cells, and deficiency in equilibrative nucleoside transporter 1 (ENT1) can lead to resistance to these drugs. To facilitate transport-independent uptake, prodrugs with a fatty acid chain attached to the 5'-position of the ribose group of gemcitabine or cytarabine were developed (CP-4126 and CP-4055, respectively). As antimetabolites can activate cellular survival pathways, we investigated whether the prodrugs or their side-chains had similar or decreased effects. METHODS: Two cell lines A549 (non-small cell lung cancer) and WiDr (colon cancer cells) were exposed for 2-24hr to IC50 concentrations of GEM, Ara-C, CP-4126, CP4055 and elaidic acid (EA) concentrations corresponding to the CP-4126 and CP-4055 IC50. Cells were harvested and analyzed for proteins in cell survival pathways (p-AKT/AKT, p-ERK/ERK, p-P38/P38, GSK-3ß/pGSK-3ß) by using Western Blotting. RESULTS: All drugs and their derivatives showed time- and cell-line-dependent effects. In A549 cells, GEM, CP-4126 and EA-4126 decreased the p-AKT/AKT ratio at 2 and 24 hr. For the p-ERK/ERK ratio, GEM, EA-4126, Ara-C, CP-4045 and EA-4055 exposure led to an increase after 6 hr in A549 cells. Interestingly, Ara-C, CP-4055 and EA-4055 decreased p-ERK/ERK ratio in WiDr cells after 4 hr. In A549 cells, the p-GSK-3ß/GSK-3ß ratio decreased after exposure to Ara-C and CP-4055 but in WiDr cells increased after 24 hr. In A549 cells treatment with Ara-C, CP-4055 and EA-4126 decreased the p-P38/P38 after 6 hr. CONCLUSIONS: The findings suggest that both parent drugs, prodrugs, and the EA chain influence cell survival and signaling pathways.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38660992

RESUMO

Thymidylate synthase (TS) is an enzyme responsible for the conversion of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP), with the co-substrate 5,10-methylenetetrahydrofolate (5,10-CH2-THF) as the methyl donor. TS is the only enzyme capable of de novo biosynthesis of dTMP in humans, a nucleotide crucial for DNA synthesis and therefore cell proliferation and survival. As such, TS is a major drug target in chemotherapy by compounds such as 5-fluorouracil. Due to the clinical and physiological importance of TS, the ability to accurately assay its activity is crucial. Several assays have been developed for this purpose, relying on spectrophotometry or radioisotope labeling methods. In this study, we have developed a liquid chromatography - mass spectrometry-based method for assessing TS activity by direct and specific measurement of the reaction product, dTMP. The assay was tested on mouse liver homogenates. We noted that excessive 5,10-CH2-THF concentration (400 µM) led to substrate inhibition and therefore 200 µM was used. The activity assayed at 1 µM dUMP was linear with protein content and time (up to 60 min) and was 0.56 ± 0.12 pmol/mg protein/min, in line with previously reported values. Additionally, by using a high mass resolution Orbitrap instrument side reactions were monitored, revealing major changes in folate pools and nucleotide metabolism. These findings highlight the value of the developed TS assay for routine TS activity monitoring in complex matrixes such as clinical material.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38420938

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy with limited treatment options, highlighting the urgent need for innovative approaches. A promising target for new anticancer therapies across various tumor types is the receptor tyrosine kinase c-MET. Here, we examined the impact of the c-MET inhibitor tivantinib in combination with gemcitabine on both primary and immortalized PDAC cells, and we investigated the mechanism underlying this combined treatment's effects. Our findings demonstrate that tivantinib is synergistic with gemcitabine, which is not related to cytidine deaminase but to inhibition of the polymerization of tubulin. Moreover, these drugs affected the expression of microRNAs miR-21 and miR-34, which regulate key oncogenic pathways. These findings might have an impact on the selection of patients for future trials.

14.
Basic Clin Pharmacol Toxicol ; 134(4): 507-518, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38284479

RESUMO

Thiopurine treatment is regularly complicated by drug-induced liver injury. It has been suggested that oxidative stress may play a synergistic role. To assess whether thiopurine-induced liver injury coincides with increased oxidative stress and whether co-administration with N-acetylcysteine is protective, we performed a randomized open label crossover pilot study in inflammatory bowel disease patients with thiopurine-induced increased serum liver tests. The study comprised four stages of 4 weeks. Patients received no additional therapy followed by N-acetylcysteine 1200 mg twice a day, or the other way around, alongside ongoing thiopurine treatment. The third and fourth stages comprised a washout period and thiopurine reintroduction period. Nine patients completed the study, and the addition of N-acetylcysteine decreased myeloperoxidase concentrations (33.6-24.5 pmol/L, p = 0.038). The other biomarkers remained unchanged, including thiopurine metabolites, xanthine oxidase activity, thiopurine S-methyltransferase activity and serum liver enzyme activity tests. Reintroduction of thiopurines led to an increase of F2-isoprostanes (101-157 ng/mmol, p = 0.038), but not of serum liver enzyme activity tests. Results suggests that thiopurines may increase oxidative stress and although the addition of N-acetylcysteine led to a decrease in plasma myeloperoxidase concentrations, it does not protect from thiopurine-induced increase of serum liver tests.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doenças Inflamatórias Intestinais , Purinas , Compostos de Sulfidrila , Humanos , Acetilcisteína/uso terapêutico , Imunossupressores , Doenças Inflamatórias Intestinais/tratamento farmacológico , Peroxidase , Projetos Piloto , Purinas/efeitos adversos , Compostos de Sulfidrila/efeitos adversos , Estudos Cross-Over
15.
Int J Pharm ; 652: 123839, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38266944

RESUMO

BACKGROUND: Chemotherapy-induced peripheral neuropathy (CIPN) is a serious adverse effect of cisplatin. The current study aimed to determine whether PEGylated nanoliposomal cisplatin can limit CIPN in an animal model. METHODS: Cisplatin-loaded PEGylated liposome nanoparticles (Cis-PL) were produced as a combination of lecithin, cholesterol, and DSPE-mPEG2000 in a molar ratio of 50:45:5 and were characterized by polydispersity index (PDI), zeta potential, Field emission scanning electron microscopy (FESEM) analysis, as well as encapsulation efficiency (EE). Fifteen male rats were provided and randomly divided into 3 groups including Cis-PL group, cisplatin group, and control group. Behavioural tests (hot-plate test and acetone drop test) were used for evaluating CIPN. Moreover, oxidative stress markers and histopathological analysis were applied. Treatment-related toxicity was assessed by haematological analysis as well as liver and renal function tests. RESULTS: Cis-PL had an average particle size of 125.4, PDI of 0.127, and zeta potential of -40.9 mV. Moreover, the Cis-PL exhibited a high EE as well as low levels of leakage rate at 25 °C. In a hot-plate test, paw withdrawal latency was longer in Cis-PL group in comparison to rats treated with cisplatin. A lower number of withdrawal responses was detected during acetone drop test in Cis-PL group than in cisplatin-treated rats. Assessment of oxidative stress markers showed that Cis-PL could improve oxidative stress. Additionally, histopathological assessment demonstrated that the number of satellite cells was significantly reduced in the dorsal root ganglion (DRG) of Cis-PL-treated rats compared with those treated with cisplatin. The cisplatin group had elevated white blood cells counts, reduced platelet counts, and higher levels of bilirubin, ALT (alanine aminotransferase, and AST (aspartate aminotransferase), and creatinine compared with the control group, which was ameliorated in Cis-PL group. CONCLUSIONS: Data from the current study support the previous hypothesis that Cisplatin-loaded PEGylated liposome could be a promising solution for CIPN in the future by modulating oxidative stress and preventing glial cell activation in DRG, suggesting further clinical studies to investigate the efficacy of this agent and its potential application in clinical practice.


Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Ratos , Masculino , Animais , Cisplatino/toxicidade , Lipossomos , Acetona , Antineoplásicos/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/patologia , Polietilenoglicóis/efeitos adversos
16.
Cancer Drug Resist ; 6(3): 430-446, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842233

RESUMO

Aim: This study aimed to decipher the molecular mechanism underlying the synergistic effect of inhibitors of the mevalonate-cholesterol pathway (i.e., statins) and aminopeptidase inhibitors (APis) on APi-sensitive and -resistant acute myeloid leukemia (AML) cells. Methods: U937 cells and their sublines with low and high levels of acquired resistance to (6S)-[(R)-2-((S)-Hydroxy-hydroxycarbamoyl-methoxy-methyl)-4-methyl-pentanoylamino]-3,3 dimethyl-butyric acid cyclopentyl ester (CHR2863), an APi prodrug, served as main AML cell line models. Drug combination effects were assessed with CHR2863 and in vitro non-toxic concentrations of various statins upon cell growth inhibition, cell cycle effects, and apoptosis induction. Mechanistic studies involved analysis of Rheb prenylation required for mTOR activation. Results: A strong synergy of CHR2863 with the statins simvastatin, fluvastatin, lovastatin, and pravastatin was demonstrated in U937 cells and two CHR2863-resistant sublines. This potent synergy between simvastatin and CHR2863 was also observed with a series of other human AML cell lines (e.g., THP1, MV4-11, and KG1), but not with acute lymphocytic leukemia or multiple solid tumor cell lines. This synergistic activity was: (i) specific for APis (e.g., CHR2863 and Bestatin), rather than for other cytotoxic agents; and (ii) corroborated by enhanced induction of apoptosis and cell cycle arrest which increased the sub-G1 fraction. Consistently, statin potentiation of CHR2863 activity was abrogated by co-administration of mevalonate and/or farnesyl pyrophosphate, suggesting the involvement of protein prenylation; this was experimentally confirmed by impaired Rheb prenylation by simvastatin. Conclusion: These novel findings suggest that the combined inhibitory effect of impaired Rheb prenylation and CHR2863-dependent mTOR inhibition instigates a potent synergistic inhibition of statins and APis on human AML cells.

17.
Cancer Lett ; 577: 216425, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37805163

RESUMO

Lung adenocarcinoma (LUAD) is one of the most prevalent and aggressive types of lung cancer. Metabolic reprogramming plays a critical role in the development and progression of LUAD. Pyruvate dehydrogenase kinase 1 (PDK1) and lactate dehydrogenase A (LDHA) are two key enzymes involved in glucose metabolism, whilst their aberrant expressions are often associated with tumorigenesis. Herein, we investigated the anticancer effects of combined inhibition of PDK1 and LDHA in LUAD in vitro and in vivo and its underlying mechanisms of action. The combination of a PDK1 inhibitor, 64, and a LDHA inhibitor, NHI-Glc-2, led to a synergistic growth inhibition in 3 different LUAD cell lines and more than additively suppressed tumor growth in the LUAD xenograft H1975 model. This combination also inhibited cellular migration and colony formation, while it induced a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS) resulting in mitochondrial depolarization and apoptosis in LUAD cells. These effects were related to modulation of multiple cell signaling pathways, including AMPK, RAS/ERK, and AKT/mTOR. Our findings demonstrate that simultaneous inhibition of multiple glycolytic enzymes (PDK1 and LDHA) is a promising novel therapeutic approach for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Lactato Desidrogenase 5 , Neoplasias Pulmonares , Piruvato Desidrogenase Quinase de Transferência de Acetil , Humanos , Adenocarcinoma de Pulmão/tratamento farmacológico , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células , Glicólise , L-Lactato Desidrogenase , Lactato Desidrogenase 5/antagonistas & inibidores , Lactato Desidrogenase 5/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Transdução de Sinais
18.
Artigo em Inglês | MEDLINE | ID: mdl-37874224

RESUMO

In June 2023, the Purine and Pyrimidine Society (PPS) organized the 20th biennial symposium on Purine and Pyrimidine metabolism (PP23). The symposium was organized in Los Angeles, California, USA, by Pr Caius Radu affiliated to UCLA. The scientific program covered various topics such as inborn errors, cancer, immunity, enzymatic reactions, drug development etc and was presented at 9 sessions over three days. The current issue of Nucleosides, Nucleotides & Nucleic Acids is a special issue covering proceedings from PP23-presentations and other PPS-related manuscripts, and in this editorial, we will give an overview of the scientific program of the meeting.

19.
Cancers (Basel) ; 15(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686578

RESUMO

Introduction: Colorectal cancer (CRC) is a common cancer associated with poor outcomes, underscoring a need for the identification of novel prognostic and therapeutic targets to improve outcomes. This study aimed to identify genetic variants and differentially expressed genes (DEGs) using genome-wide DNA and RNA sequencing followed by validation in a large cohort of patients with CRC. Methods: Whole genome and gene expression profiling were used to identify DEGs and genetic alterations in 146 patients with CRC. Gene Ontology, Reactom, GSEA, and Human Disease Ontology were employed to study the biological process and pathways involved in CRC. Survival analysis on dysregulated genes in patients with CRC was conducted using Cox regression and Kaplan-Meier analysis. The STRING database was used to construct a protein-protein interaction (PPI) network. Moreover, candidate genes were subjected to ML-based analysis and the Receiver operating characteristic (ROC) curve. Subsequently, the expression of the identified genes was evaluated by Real-time PCR (RT-PCR) in another cohort of 64 patients with CRC. Gene variants affecting the regulation of candidate gene expressions were further validated followed by Whole Exome Sequencing (WES) in 15 patients with CRC. Results: A total of 3576 DEGs in the early stages of CRC and 2985 DEGs in the advanced stages of CRC were identified. ASPHD1 and ZBTB12 genes were identified as potential prognostic markers. Moreover, the combination of ASPHD and ZBTB12 genes was sensitive, and the two were considered specific markers, with an area under the curve (AUC) of 0.934, 1.00, and 0.986, respectively. The expression levels of these two genes were higher in patients with CRC. Moreover, our data identified two novel genetic variants-the rs925939730 variant in ASPHD1 and the rs1428982750 variant in ZBTB1-as being potentially involved in the regulation of gene expression. Conclusions: Our findings provide a proof of concept for the prognostic values of two novel genes-ASPHD1 and ZBTB12-and their associated variants (rs925939730 and rs1428982750) in CRC, supporting further functional analyses to evaluate the value of emerging biomarkers in colorectal cancer.

20.
Cytokine Growth Factor Rev ; 73: 163-172, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37541790

RESUMO

Chemoresistance constitute a major obstacle in cancer treatment, leading to limited options and decreased patient survival. Recent studies have revealed a novel mechanism of chemoresistance acquisition: the transfer of information via exosomes, small vesicles secreted by various cells. Exosomes play a crucial role in intercellular communication by carrying proteins, nucleic acids, and metabolites, influencing cancer cell behavior and response to treatment. One crucial mechanism of resistance is cancer metabolic reprogramming, which involves alterations in the cellular metabolic pathways to support the survival and proliferation of drug-resistant cancer cells. This metabolic reprogramming often includes increased glycolysis, providing cancer cells with the necessary energy and building blocks to evade the effects of chemotherapy. Notably, exosomes have been found to transport glycolytic enzymes, as identified in proteomic profiling, leading to the reprogramming of metabolic pathways, facilitating altered glucose metabolism and increased lactate production. As a result, they profoundly impact the tumor microenvironment, promoting tumor progression, survival, immune evasion, and drug resistance.Understanding the complexities of such exosome-mediated cell-to-cell communication might open new therapeutic avenues and facilitate biomarker development in managing cancers characterized by aggressive glycolytic features. Moreover, given the intricate nature of metabolic abnormalities combining future exosome-based-targeted therapies with existing treatments like chemotherapy, immunotherapy, and targeted therapies holds promise for achieving synergistic effects to overcome resistance and improve cancer treatment outcomes.


Assuntos
Exossomos , Neoplasias , Humanos , Resistencia a Medicamentos Antineoplásicos , Exossomos/fisiologia , Proteômica , Neoplasias/terapia , Glicólise , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA