Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Part Fibre Toxicol ; 15(1): 15, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29642936

RESUMO

BACKGROUND: Titanium dioxide (TiO2) is produced at high volumes and applied in many consumer and food products. Recent toxicokinetic modelling indicated the potential of TiO2 to accumulate in human liver and spleen upon daily oral exposure, which is not routinely investigated in chronic animal studies. A health risk from nanosized TiO2 particle consumption could not be excluded then. RESULTS: Here we show the first quantification of both total titanium (Ti) and TiO2 particles in 15 post-mortem human livers and spleens. These low-level analyses were enabled by the use of fully validated (single particle) inductively coupled plasma high resolution mass spectrometry ((sp)ICP-HRMS) detection methods for total Ti and TiO2 particles. The presence of TiO2 in the particles in tissues was confirmed by Scanning Electron Microscopy with energy dispersive X-ray spectrometry. CONCLUSIONS: These results prove that TiO2 particles are present in human liver and spleen, with ≥24% of nanosize (< 100 nm). The levels are below the doses regarded as safe in animals, but half are above the dose that is deemed safe for liver damage in humans when taking into account several commonly applied uncertainty factors. With these new and unique human data, we remain with the conclusion that health risks due to oral exposure to TiO2 cannot be excluded.


Assuntos
Fígado/química , Nanopartículas/análise , Baço/química , Titânio/análise , Idoso , Idoso de 80 Anos ou mais , Autopsia , Feminino , Humanos , Limite de Detecção , Fígado/ultraestrutura , Masculino , Microscopia Eletroquímica de Varredura , Pessoa de Meia-Idade , Medição de Risco , Espectrometria por Raios X , Baço/ultraestrutura , Distribuição Tecidual
2.
Rapid Commun Mass Spectrom ; 24(11): 1595-609, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20486255

RESUMO

Unification of the screening protocols for a wide range of doping agents has become an important issue for doping control laboratories. This study presents the development and validation of a generic liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) screening method of 241 small molecule analytes from various categories of prohibited substances (stimulants, narcotics, diuretics, beta(2)-agonists, beta-blockers, hormone antagonists and modulators, glucocorticosteroids and anabolic agents). It is based on a single-step liquid-liquid extraction of hydrolyzed urine and the use of a rapid-resolution liquid chromatography/high-resolution time-of-flight mass spectrometric system acquiring continuous full scan data. Electrospray ionization in the positive mode was used. Validation parameters consisted of identification capability, limit of detection, specificity, ion suppression, extraction recovery, repeatability and mass accuracy. Detection criteria were established on the basis of retention time reproducibility and mass accuracy. The suitability of the methodology for doping control was demonstrated with positive urine samples. The preventive role of the method was proved by the case where full scan acquisition with accurate mass measurement allowed the retrospective reprocessing of acquired data from past doping control samples for the detection of a designer drug, the stimulant 4-methyl-2-hexanamine, which resulted in re-reporting a number of stored samples as positives for this particular substance, when, initially, they had been reported as negatives.


Assuntos
Anabolizantes/urina , Cromatografia Líquida/métodos , Dopagem Esportivo/prevenção & controle , Espectrometria de Massas/métodos , Detecção do Abuso de Substâncias/métodos , Humanos , Limite de Detecção
3.
Anal Chim Acta ; 664(1): 77-88, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20226935

RESUMO

Biological tests can be used to screen samples for large groups of compounds having a particular effect, but it is often difficult to identify a specific compound when a positive effect is observed. The identification of an unknown compound is a challenge for analytical chemistry in environmental analysis, food analysis, as well as in clinical and forensic toxicology. In this study bioassay-guided fractionation, ultra high performance liquid chromatography combined with time-of-flight mass spectrometry (UHPLC/TOFMS) and accurate mass database searching was tested to detect and identify unknown androgens. Herbal mixtures and sport supplements were tested using an androgen bioassay and modifications in sample preparations were carried out in order to activate inactive pro-androgens, androgen esters and conjugated androgens to enable their detection in the bioassay. Two of the four herbal mixtures tested positive and bioassay-guided fractionation followed by UHPLC/TOFMS of positive fractions resulted in the identification of nortestosterone phenylpropionate, testosterone cyclohexanecarboxylate and methyltestosterone. Three of the four sport supplements reacted toxic in the bioassay or gave inconclusive results and were further investigated using UHPLC/TOFMS in combination with data processing software and an accurate mass database having approximately 40,000 entries. This accurate mass database was derived from the PubChem database on the internet and coupled to the TOFMS software. This resulted in the tentative identification of several androgens, including methylboldenone, testosterone and the androgen esters methyltestosterone propionate or testosterone isobutyrate, testosterone buciclate and methylenetestosterone acetate. The study showed that bioassay-guided fractionation in combination with UHPLC/TOFMS analysis is a useful procedure to detect, isolate and identify unknown androgens in suspected samples. As an alternative, the use of data processing software in combination with an accurate mass database and coupled on-line with the TOFMS instrument software enabled the identification of androgens and androgen esters in the chromatogram even without bioassay-guided fractionation.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Esteroides/química , Bases de Dados Factuais , Metiltestosterona/análise , Nandrolona/análogos & derivados , Nandrolona/análise , Esteroides/metabolismo , Testosterona/análogos & derivados , Testosterona/análise
4.
Anal Bioanal Chem ; 396(7): 2583-98, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20155493

RESUMO

A unification of doping-control screening procedures of prohibited small molecule substances--including stimulants, narcotics, steroids, beta2-agonists and diuretics--is highly urgent in order to free resources for new classes such as banned proteins. Conceptually this may be achieved by the use of a combination of one gas chromatography-time-of-flight mass spectrometry method and one liquid chromatography-time-of-flight mass spectrometry method. In this work a quantitative screening method using high-resolution liquid chromatography in combination with accurate-mass time-of-flight mass spectrometry was developed and validated for determination of glucocorticosteroids, beta2-agonists, thiazide diuretics, and narcotics and stimulants in urine. To enable the simultaneous isolation of all the compounds of interest and the necessary purification of the resulting extracts, a generic extraction and hydrolysis procedure was combined with a solid-phase extraction modified for these groups of compounds. All 56 compounds are determined using positive electrospray ionisation with the exception of the thiazide diuretics for which the best sensitivity was obtained by using negative electrospray ionisation. The results show that, with the exception of clenhexyl, procaterol, and reproterol, all compounds can be detected below the respective minimum required performance level and the results for linearity, repeatability, within-lab reproducibility, and accuracy show that the method can be used for quantitative screening. If qualitative screening is sufficient the instrumental analysis may be limited to positive ionisation, because all analytes including the thiazides can be detected at the respective minimum required levels in the positive mode. The results show that the application of accurate-mass time-of-flight mass spectrometry in combination with generic extraction and purification procedures is suitable for unification and expansion of the window of screening methods of doping laboratories. Moreover, the full-scan accurate-mass data sets obtained still allow retrospective examination for emerging doping agents, without re-analyzing the samples.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Dopagem Esportivo/prevenção & controle , Drogas Ilícitas/urina , Manejo de Espécimes/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Detecção do Abuso de Substâncias/métodos , Urinálise/métodos , Animais , Técnicas de Laboratório Clínico , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
J Chromatogr A ; 1216(46): 8206-16, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19406412

RESUMO

The last 2 years multi-compound methods are gaining ground as screening methods. In this study a high-resolution liquid chromatography combined with time-of-flight mass spectrometry (HRLC-ToF-MS) is tested for the screening of about 100 veterinary drugs in three matrices, meat, fish and egg. While the results are satisfactory for 70-90% of the veterinary drugs, a more efficient sample preparation or extract purification is required for quantitative analysis of all analytes in more difficult matrices like egg. The average mass measurement error of the ToF-MS for the veterinary drugs spiked at concentrations ranging from 4 to 400 microg/kg, is 3.0 ppm (median 2.5 ppm) with little difference between the three matrices, but slightly decreases with increasing concentration. The SigmaFit value, a new feature for isotope pattern matching, also decreases with increasing concentration and, in addition, shows an increase with increasing matrix complexity. While the average SigmaFit value is 0.04, the median is 0.01 indicating some high individual deviations. As with the mass measurement error, the highest deviations are found in those regions of the chromatogram where most compounds elute from the column, be it analytes or matrix compounds. The median repeatability of the method ranges from 8% to 15%, decreasing with increasing concentration, while the median reproducibility ranges from 15% to 20% with little difference between matrices and concentrations. The median accuracy is in between 70% and 100% with a few compounds showing higher values due to matrix interference. The squared regression coefficient is >0.99 for 92% of the compounds showing a good overall linearity for most compounds. The detection capability, CCbeta, is within 2 times the associated validation level for >90% of the compounds studied. By changing a few conditions in the analyses protocol and analysing a number of blank samples, it was determined that the method is robust as well as specific. Finally, an alternative validation strategy is proposed and tested for screening methods. While the results calculated for repeatability, within-lab reproducibility and CCbeta show a good comparison for the matrices meat and fish, and a reasonable comparison for the matrix egg, only 27 analyses are required to obtain these results versus 63 analysis in the traditional, 2002/657/EC, approach. This alternative is suggested as a cost-effective validation procedure for screening methods.


Assuntos
Cromatografia Líquida/métodos , Resíduos de Drogas/análise , Ovos/análise , Espectrometria de Massas/métodos , Carne/análise , Drogas Veterinárias/análise , Animais , Bovinos , Galinhas , Peixes , Sensibilidade e Especificidade , Suínos
6.
Anal Bioanal Chem ; 391(6): 2309-22, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18491081

RESUMO

Ultra-performance liquid chromatography combined with time-of-flight mass spectrometry (UPLC-ToF-MS) has been used for screening and quantification of more than 100 veterinary drugs in milk. The veterinary drugs represent different classes including benzimidazoles, macrolides, penicillins, quinolones, sulphonamides, pyrimidines, tetracylines, nitroimidazoles, tranquillizers, ionophores, amphenicols and non-steroidal anti-inflammatory agents (NSAIDs). After protein precipitation, centrifugation and solid-phase extraction (SPE), the extracts were analysed by UPLC-ToF-MS. From the acquired full scan data the drug-specific ions were extracted for construction of the chromatograms and evaluation of the results. The analytical method was validated according to the EU guidelines (2002/657/EC) for a quantitative screening method. At the concentration level of interest (MRL level) the results for repeatability (%RSD < 20% for 86% of the compounds), reproducibility (%RSD < 40% for 96% of the compounds) and the accuracy (80-120% for 88% of the compounds) were satisfactory. Evaluation of the CCbeta values and the linearity results demonstrates that the developed method shows adequate sensitivity and linearity to provide quantitative results. Furthermore, the method is accurate enough to differentiate between suspected and negative samples or drug concentrations below or above the MRL. A set of 100 samples of raw milk were screened for residues. No suspected (positive) results were obtained except for the included blind reference sample containing sulphamethazine (88 microg/l) that tested positive for this compound. UPLC-ToF-MS combines high resolution for both LC and MS with high mass accuracy which is very powerful for the multi-compound analysis of veterinary drugs. The technique seems to be powerful enough for the analysis of not only veterinary drugs but also organic contaminants like pesticides, mycotoxins and plant toxins in one single method.


Assuntos
Leite/química , Espectrometria de Massas em Tandem/métodos , Drogas Veterinárias/análise , Animais , Precipitação Química , Cromatografia Líquida de Alta Pressão , Microextração em Fase Sólida , Espectrometria de Massas em Tandem/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA