Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 30(3): 597-612, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33345392

RESUMO

Plasminogen activator inhibitor-1 (PAI-1) is the primary inhibitor for plasminogen activators, tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). As a unique member in the serine protease inhibitor (serpin) family, PAI-1 is metastable and converts to an inactive, latent structure with a half-life of 1-2 hr under physiological conditions. Unusual effects of metals on the rate of the latency conversion are incompletely understood. Previous work has identified two residues near the N-terminus, H2 and H3, which reside in a high-affinity copper-binding site in PAI-1 [Bucci JC, McClintock CS, Chu Y, Ware GL, McConnell KD, Emerson JP, Peterson CB (2017) J Biol Inorg Chem 22:1123-1,135]. In this study, neighboring residues, H10, E81, and H364, were tested as possible sites that participate in Cu(II) coordination at the high-affinity site. Kinetic methods, gel sensitivity assays, and isothermal titration calorimetry (ITC) revealed that E81 and H364 have different roles in coordinating metal and mediating the stability of PAI-1. H364 provides a third histidine in the metal-coordination sphere with H2 and H3. In contrast, E81 does not appear to be required for metal ligation along with histidines; contacts made by the side-chain carboxylate upon metal binding are perturbed and, in turn, influence dynamic fluctuations within the region encompassing helices D, E, and F and the W86 loop that are important in the pathway for the PAI-1 latency conversion. This investigation underscores a prominent role of protein dynamics, noncovalent bonding networks and ligand binding in controlling the stability of the active form of PAI-1.


Assuntos
Cobre , Inibidor 1 de Ativador de Plasminogênio , Proteínas Recombinantes , Sítios de Ligação , Calorimetria , Cobre/química , Cobre/metabolismo , Estabilidade Enzimática , Humanos , Simulação de Dinâmica Molecular , Inibidor 1 de Ativador de Plasminogênio/química , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
2.
Protein Sci ; 29(2): 494-508, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31682300

RESUMO

The serine protease inhibitor, plasminogen activator inhibitor Type-1 (PAI-1) is a metastable protein that undergoes an unusual transition to an inactive conformation with a short half-life of only 1-2 hr. Circulating PAI-1 is bound to a cofactor vitronectin, which stabilizes PAI-1 by slowing this latency conversion. A well-characterized PAI-1-binding site on vitronectin is located within the somatomedin B (SMB) domain, corresponding to the first 44 residues of the protein. Another PAI-1 recognition site has been identified with an engineered form of vitronectin lacking the SMB domain, yet retaining PAI-1 binding capacity (Schar, Blouse, Minor, Peterson. J Biol Chem. 2008;283:28487-28496). This additional binding site is hypothesized to lie within an intrinsically disordered domain (IDD) of vitronectin. To localize the putative binding site, we constructed a truncated form of vitronectin containing 71 amino acids from the N-terminus, including the SMB domain and an additional 24 amino acids from the IDD region. This portion of the IDD is rich in acidic amino acids, which are hypothesized to be complementary to several basic residues identified within an extensive vitronectin-binding site mapped on PAI-1 (Schar, Jensen, Christensen, Blouse, Andreasen, Peterson. J Biol Chem. 2008;283:10297-10309). Steady-state and stopped-flow fluorescence measurements demonstrate that the truncated form of vitronectin exhibits the same rapid biphasic association as full-length vitronectin and that the IDD hosts the elusive second PAI-1 binding site that lies external to the SMB domain of vitronectin.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Inibidor 1 de Ativador de Plasminogênio/química , Vitronectina/química , Sítios de Ligação , Humanos , Modelos Moleculares , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/isolamento & purificação , Espectrometria de Fluorescência
3.
Biochemistry ; 58(51): 5117-5134, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31793295

RESUMO

Small-angle neutron scattering (SANS) measurements were pursued to study human vitronectin, a protein found in tissues and the circulation that regulates cell adhesion/migration and proteolytic cascades that govern hemostasis and pericellular proteolysis. Many of these functions occur via interactions with its binding partner, plasminogen activator inhibitor-1 (PAI-1), the chief inhibitor of proteases that lyse and activate plasminogen. We focused on a region of vitronectin that remains uncharacterized from previous X-ray scattering, nuclear magnetic resonance, and computational modeling approaches and which we propose is involved in binding to PAI-1. This region, which bridges the N-terminal somatomedin B (SMB) domain with a large central ß-propeller domain of vitronectin, appears unstructured and has characteristics of an intrinsically disordered domain (IDD). The effect of osmolytes was evaluated using circular dichroism and SANS to explore the potential of the IDD to undergo a disorder-to-order transition. The results suggest that the IDD favors a more ordered structure under osmotic pressure; SANS shows a smaller radius of gyration (Rg) and a more compact fold of the IDD upon addition of osmolytes. To test whether PAI-1 binding is also coupled to folding within the IDD structure, a set of SANS experiments with contrast variation were performed on the complex of PAI-1 with a vitronectin fragment corresponding to the N-terminal 130 amino acids (denoted the SMB-IDD because it contains the SMB domain and IDD in linear sequence). Analysis of the SANS data using the Ensemble Optimization Method confirms that the SMB-IDD adopts a more compact configuration when bound to PAI-1. Calculated structures for the PAI-1:SMB-IDD complex suggest that the IDD provides an interaction surface outside of the primary PAI-1-binding site located within the SMB domain; this binding is proposed to lead to the assembly of higher-order structures of vitronectin and PAI-1 commonly found in tissues.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Vitronectina/química , Vitronectina/metabolismo , Modelos Moleculares , Ligação Proteica , Domínios Proteicos
4.
J Biol Inorg Chem ; 22(7): 1123-1135, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28913669

RESUMO

Components of the fibrinolytic system are subjected to stringent control to maintain proper hemostasis. Central to this regulation is the serpin plasminogen activator inhibitor-1 (PAI-1), which is responsible for specific and rapid inhibition of fibrinolytic proteases. Active PAI-1 is inherently unstable and readily converts to a latent, inactive form. The binding of vitronectin and other ligands influences stability of active PAI-1. Our laboratory recently observed reciprocal effects on the stability of active PAI-1 in the presence of transition metals, such as copper, depending on the whether vitronectin was also present (Thompson et al. Protein Sci 20:353-365, 2011). To better understand the molecular basis for these copper effects on PAI-1, we have developed a gel-based copper sensitivity assay that can be used to assess the copper concentrations that accelerate the conversion of active PAI-1 to a latent form. The copper sensitivity of wild-type PAI-1 was compared with variants lacking N-terminal histidine residues hypothesized to be involved in copper binding. In these PAI-1 variants, we observed significant differences in copper sensitivity, and these data were corroborated by latency conversion kinetics and thermodynamics of copper binding by isothermal titration calorimetry. These studies identified a copper-binding site involving histidines at positions 2 and 3 that confers a remarkable stabilization of PAI-1 beyond what is observed with vitronectin alone. A second site, independent from the two histidines, binds metal and increases the rate of the latency conversion.


Assuntos
Cobre/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Sítios de Ligação , Histidina/química , Histidina/metabolismo , Humanos , Cinética , Modelos Moleculares , Inibidor 1 de Ativador de Plasminogênio/química , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Vitronectina/metabolismo
5.
Biochemistry ; 55(31): 4386-98, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27416303

RESUMO

Plasminogen activator inhibitor type 1 (PAI-1) regulates the fibrinolysis pathway by inhibiting the protease activity of plasminogen activators. PAI-1 works in concert with vitronectin (VN), an extracellular protein that aids in localization of active PAI-1 to tissues. The Peterson laboratory demonstrated that Cu(II) and other transition metals modulate the stability of PAI-1, exhibiting effects that are dependent on the presence or absence of the somatomedin B (SMB) domain of VN. The study presented here dissects the changes in molecular dynamics underlying the destabilizing effects of Cu(II) on PAI-1. We utilize backbone amide hydrogen/deuterium exchange monitored by mass spectrometry to assess PAI-1 dynamics in the presence and absence of Cu(II) ions with and without the SMB domain of VN. We show that Cu(II) produces an increase in dynamics in regions important for the function and overall stability of PAI-1, while the SMB domain elicits virtually the opposite effect. A mutant form of PAI-1 lacking two N-terminal histidine residues at positions 2 and 3 exhibits similar increases in dynamics upon Cu(II) binding compared to that of active wild-type PAI-1, indicating that the observed structural effects are not a result of coordination of Cu(II) to these histidine residues. Finally, addition of Cu(II) results in an acceleration of the local unfolding kinetics of PAI-1 presumed to be on pathway to the latency conversion. The effect of ligands on the dynamics of PAI-1 adds another intriguing dimension to the mechanisms for regulation of PAI-1 stability and function.


Assuntos
Cobre/metabolismo , Inibidor 1 de Ativador de Plasminogênio/química , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Medição da Troca de Deutério/métodos , Fibrinólise , Histidina/química , Humanos , Cinética , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Somatomedinas/química , Somatomedinas/metabolismo , Resposta a Proteínas não Dobradas , Vitronectina/química , Vitronectina/metabolismo
6.
J Chem Inf Model ; 56(3): 535-47, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26848511

RESUMO

The risk of serious bleeding is a major liability of anticoagulant drugs that are active-site competitive inhibitors targeting the Factor Xa (FXa) prothrombin (PT) binding site. The present work identifies several new classes of small molecule anticoagulants that can act as nonactive site inhibitors of the prothrombinase (PTase) complex composed of FXa and Factor Va (FVa). These new classes of anticoagulants were identified, using a novel agnostic computational approach to identify previously unrecognized binding pockets at the FXa-FVa interface. From about three million docking calculations of 281,128 compounds in a conformational ensemble of FXa heavy chains identified by molecular dynamics (MD) simulations, 97 compounds and their structural analogues were selected for experimental validation, through a series of inhibition assays. The compound selection was based on their predicted binding affinities to FXa and their ability to successfully bind to multiple protein conformations while showing selectivity for particular binding sites at the FXa/FVa interface. From these, thirty-one (31) compounds were experimentally identified as nonactive site inhibitors. Concentration-based assays further identified 10 compounds represented by four small-molecule families of inhibitors that achieve dose-independent partial inhibition of PTase activity in a nonactive site-dependent and self-limiting mechanism. Several compounds were identified for their ability to bind to protein conformations only seen during MD, highlighting the importance of accounting for protein flexibility in structure-based drug discovery approaches.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Tromboplastina/antagonistas & inibidores , Humanos , Modelos Moleculares
7.
Protein Sci ; 25(2): 487-98, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26540464

RESUMO

The serine protease inhibitor (serpin), plasminogen activator inhibitor-1 (PAI-1), is an important biomarker for cardiovascular disease and many cancers. It is therefore a desirable target for pharmaceutical intervention. However, to date, no PAI-1 inhibitor has successfully reached clinical trial, indicating the necessity to learn more about the mechanics of the serpin. Although its kinetics of inhibition have been extensively studied, less is known about the latency transition of PAI-1, in which the solvent-exposed reactive center loop (RCL) inserts into its central ß-sheet, rendering the inhibitor inactive. This spontaneous transition is concomitant with a large translocation of the RCL, but no change in covalent structure. Here, we conjugated the fluorescent probe, NBD, to single positions along the RCL (P13-P5') to detect changes in solvent exposure that occur during the latency transition. The results support a mousetrap-like RCL-insertion that occurs with a half-life of 1-2 h in accordance with previous reports. Importantly, this study exposes unique transitions during latency that occur with a half-life of ∼5 and 25 min at the P5' and P8 RCL positions, respectively. We hypothesize that the process detected at P5' represents s1C detachment, while that at P8 results from a steric barrier to RCL insertion. Together, these findings provide new insights by characterizing multiple steps in the latency transition.


Assuntos
Corantes Fluorescentes/química , Inibidor 1 de Ativador de Plasminogênio/química , Domínio Catalítico , Fluorescência , Humanos , Modelos Moleculares , Mutação , Inibidor 1 de Ativador de Plasminogênio/genética , Conformação Proteica , Estabilidade Proteica , Solventes/química
8.
Protein Sci ; 25(2): 499-510, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26548921

RESUMO

UNLABELLED: Plasminogen activator inhibitor-1 (PAI-1) is a biologically important serine protease inhibitor (serpin) that, when overexpressed, is associated with a high risk for cardiovascular disease and cancer metastasis. Several of its ligands, including vitronectin, tissue-type and urokinase-type plasminogen activator (tPA, uPA), affect the fate of PAI-1. Here, we measured changes in the solvent accessibility and dynamics of an important unresolved functional region, the reactive center loop (RCL), upon binding of these ligands. Binding of the catalytically inactive S195A variant of tPA to the RCL causes an increase in fluorescence, indicating greater solvent protection, at its C-terminus, while mobility along the loop remains relatively unchanged. In contrast, a fluorescence increase and large decrease in mobility at the N-terminal RCL is observed upon binding of S195A-uPA to PAI-1. At a site distant from the RCL, binding of vitronectin results in a modest decrease in fluorescence at its proximal end without restricting overall loop dynamics. These results provide the new evidence for ligand effects on RCL conformation and dynamics and differences in the Michaelis complex with plasminogen activators that can be used for the development of more specific inhibitors to PAI-1. This study is also the first to use electron paramagnetic resonance (EPR) spectroscopy to investigate PAI-1 dynamics. SIGNIFICANCE: Balanced blood homeostasis and controlled cell migration requires coordination between serine proteases, serpins, and cofactors. These ligands form noncovalent complexes, which influence the outcome of protease inhibition and associated physiological processes. This study reveals differences in binding via changes in solvent accessibility and dynamics within these complexes that can be exploited to develop more specific drugs in the treatment of diseases associated with unbalanced serpin activity.


Assuntos
Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Vitronectina/metabolismo , Sítios de Ligação , Domínio Catalítico , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Vitronectina/química
9.
Biochemistry ; 54(32): 5120, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26252172

RESUMO

Biochemistry 2012, 51 (45), 9147−9155. DOI: 10.1021/bi301126g. Page 9148. A corrected version of the Figure 2 legend appears here: Figure 2. Backbone of the ANT D80Y variant in ribbon representation. Two monomer subunits are colored red and green. Bound kanamycin A molecules are colored blue, and Mg-AMPCPP molecules are colored yellow (Protein Data Bank entry 1KNY).14 Page 9148 (last line). The sentence should read, "A thermostable variant of ANT, T130K, was obtained from thermophilic cyanobacterium T. elongatus."


Assuntos
Aminoglicosídeos/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Cianobactérias/enzimologia , Cianobactérias/genética , Resistência Microbiana a Medicamentos , Estabilidade Enzimática , Variação Genética , Nucleotidiltransferases/genética , Termodinâmica
10.
J Immunol ; 190(5): 2273-81, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23345331

RESUMO

Effective removal of apoptotic cells, particularly apoptotic neutrophils, is essential for the successful resolution of acute inflammatory conditions. In these experiments, we found that whereas interaction between vitronectin and integrins diminished the ability of macrophages to ingest apoptotic cells, interaction between vitronectin with urokinase-type plasminogen activator receptor (uPAR) on the surface of apoptotic cells also had equally important inhibitory effects on efferocytosis. Preincubation of vitronectin with plasminogen activator inhibitor-1 eliminated its ability to inhibit phagocytosis of apoptotic cells. Similarly, incubation of apoptotic cells with soluble uPAR or Abs to uPAR significantly diminished efferocytosis. In the setting of LPS-induced ALI, enhanced efferocytosis and decreased numbers of neutrophils were found in bronchoalveolar lavage obtained from vitronectin-deficient (vtn(-/-)) mice compared with wild type (vtn(+/+)) mice. Furthermore, there was increased clearance of apoptotic vtn(-/-) as compared with vtn(+/+) neutrophils after introduction into the lungs of vtn(-/-) mice. Incubation of apoptotic vtn(-/-) neutrophils with purified vitronectin before intratracheal instillation decreased efferocytosis in vivo. These findings demonstrate that the inhibitory effects of vitronectin on efferocytosis involve interactions with both the engulfing phagocyte and the apoptotic target cell.


Assuntos
Lesão Pulmonar Aguda/imunologia , Apoptose/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Timócitos/efeitos dos fármacos , Vitronectina/imunologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Anticorpos/farmacologia , Apoptose/imunologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Contagem de Células , Técnicas de Cocultura , Feminino , Lipopolissacarídeos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/patologia , Fagocitose/imunologia , Inibidor 1 de Ativador de Plasminogênio/farmacologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/imunologia , Timócitos/imunologia , Timócitos/patologia , Vitronectina/deficiência , Vitronectina/genética
11.
Biochemistry ; 51(45): 9147-55, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23066871

RESUMO

The aminoglycoside nucleotidyltransferase (4') (ANT) is an aminoglycoside-modifying enzyme that detoxifies antibiotics by nucleotidylating at the C4'-OH site. Previous crystallographic studies show that the enzyme is a homodimer and each subunit binds one kanamycin and one Mg-AMPCPP, where the transfer of the nucleotidyl group occurs between the substrates bound to different subunits. In this work, sedimentation velocity analysis of ANT by analytical ultracentrifugation showed the enzyme exists as a mixture of a monomer and a dimer in solution and that dimer formation is driven by hydrophobic interactions between the subunits. The binding of aminoglycosides shifts the equilibrium toward dimer formation, while the binding of the cosubstrate, Mg-ATP, has no effect on the monomer-dimer equilibrium. Surprisingly, binding of several divalent cations, including Mg(2+), Mn(2+), and Ca(2+), to the enzyme also shifted the equilibrium in favor of dimer formation. Binding studies, performed by electron paramagnetic resonance spectroscopy, showed that divalent cations bind to the aminoglycoside binding site in the absence of substrates with a stoichiometry of 2:1. Energetic aspects of binding of all aminoglycosides to ANT were determined by isothermal titration calorimetry to be enthalpically favored and entropically disfavored with an overall favorable Gibbs energy. Aminoglycosides in the neomycin class each bind to the enzyme with significantly different enthalpic and entropic contributions, while those of the kanamycin class bind with similar thermodynamic parameters.


Assuntos
Nucleotidiltransferases/química , Aminoglicosídeos/metabolismo , Sítios de Ligação , Calorimetria , Cátions Bivalentes/metabolismo , Resistência Microbiana a Medicamentos , Canamicina/metabolismo , Neomicina/metabolismo , Nucleotidiltransferases/metabolismo , Multimerização Proteica , Ribostamicina/metabolismo , Termodinâmica
12.
Am J Respir Cell Mol Biol ; 46(6): 790-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22281987

RESUMO

Vitronectin is present in large concentrations in serum and the extracellular matrix. Although vitronectin is known to modulate neutrophil adhesion and chemotaxis, and to contribute to neutrophil-associated proinflammatory processes, a role in apoptosis has not been demonstrated. In the present studies, we found that neutrophils demonstrated more rapid progression to spontaneous or TNF-related apoptosis-inducing ligand-induced apoptosis when incubated under vitronectin-free conditions than when vitronectin was present. The ability of native vitronectin to delay neutrophil apoptosis was not recapitulated by the vitronectin somatomedin B domain. In contrast, inclusion of the cyclo[Arg-Gly-Asp-D-Phe-Val] peptide in cultures containing vitronectin resulted in enhanced neutrophil apoptosis, showing that the vitronectin RGD motif (Arg-Gly-Asp motif) was responsible for the antiapoptotic effects of vitronectin. Addition of antibodies to ß(1), ß(3), or ß(5), but not to ß(2) or ß(4) integrins, reversed the ability of vitronectin to diminish neutrophil apoptosis. The ability of vitronectin to enhance neutrophil viability was dependent on activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2 kinases, but not on the p38 kinase. Increased numbers of apoptotic neutrophils were present in the lungs of LPS-treated transgenic vitronectin-deficient mice, as compared with control mice. These results demonstrate a novel antiapoptotic function for vitronectin.


Assuntos
Apoptose/fisiologia , Integrinas/metabolismo , Neutrófilos/citologia , Transdução de Sinais/fisiologia , Vitronectina/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo
13.
J Mol Biol ; 415(5): 881-99, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22178474

RESUMO

The 17-amino-acid N-terminal segment (htt(NT)) that leads into the polyglutamine (polyQ) segment in the Huntington's disease protein huntingtin (htt) dramatically increases aggregation rates and changes the aggregation mechanism, compared to a simple polyQ peptide of similar length. With polyQ segments near or above the pathological repeat length threshold of about 37, aggregation of htt N-terminal fragments is so rapid that it is difficult to tease out mechanistic details. We describe here the use of very short polyQ repeat lengths in htt N-terminal fragments to slow this disease-associated aggregation. Although all of these peptides, in addition to htt(NT) itself, form α-helix-rich oligomeric intermediates, only peptides with Q(N) of eight or longer mature into amyloid-like aggregates, doing so by a slow increase in ß-structure. Concentration-dependent circular dichroism and analytical ultracentrifugation suggest that the htt(NT) sequence, with or without added glutamine residues, exists in solution as an equilibrium between disordered monomer and α-helical tetramer. Higher order, α-helix rich oligomers appear to be built up via these tetramers. However, only htt(NT)Q(N) peptides with N=8 or more undergo conversion into polyQ ß-sheet aggregates. These final amyloid-like aggregates not only feature the expected high ß-sheet content but also retain an element of solvent-exposed α-helix. The α-helix-rich oligomeric intermediates appear to be both on- and off-pathway, with some oligomers serving as the pool from within which nuclei emerge, while those that fail to undergo amyloid nucleation serve as a reservoir for release of monomers to support fibril elongation. Based on a regular pattern of multimers observed in analytical ultracentrifugation, and a concentration dependence of α-helix formation in CD spectroscopy, it is likely that these oligomers assemble via a four-helix assembly unit. PolyQ expansion in these peptides appears to enhance the rates of both oligomer formation and nucleation from within the oligomer population, by structural mechanisms that remain unclear.


Assuntos
Amiloide/química , Proteínas do Tecido Nervoso/química , Proteínas Nucleares/química , Peptídeos/química , Polímeros/química , Sequência de Aminoácidos , Dicroísmo Circular , Humanos , Proteína Huntingtina , Dados de Sequência Molecular , Estrutura Secundária de Proteína
14.
J Biol Chem ; 286(34): 29709-17, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21697084

RESUMO

The serpin plasminogen activator inhibitor-1 (PAI-1) is a crucial regulator in fibrinolysis and tissue remodeling. PAI-1 has been associated with several pathological conditions and is a validated prognostic marker in human cancers. However, structural information about the native inhibitory form of PAI-1 has been elusive because of its inherent conformational instability and rapid conversion to a latent, inactive structure. Here we report the crystal structure of PAI-1 W175F at 2.3 Å resolution as the first model of the metastable native molecule. Structural comparison with a quadruple mutant (14-1B) previously used as representative of the active state uncovered key differences. The most striking differences occur near the region that houses three of the four mutations in the 14-1B PAI-1 structure. Prominent changes are localized within a loop connecting ß-strand 3A with the F helix, in which a previously observed 3(10)-helix is absent in the new structure. Notably these structural changes are found near the binding site for the cofactor vitronectin. Because vitronectin is the only known physiological regulator of PAI-1 that slows down the latency conversion, the structure of this region is important. Furthermore, the previously identified chloride-binding site close to the F-helix is absent from the present structure and likely to be artifactual, because of its dependence on the 14-1B mutations. Instead we found a different chlorine-binding site that is likely to be present in wild type PAI-1 and that more satisfactorily accounts for the chlorine stabilizing effect on PAI-1.


Assuntos
Inibidor 1 de Ativador de Plasminogênio/química , Cristalografia por Raios X , Humanos , Mutação de Sentido Incorreto , Inibidor 1 de Ativador de Plasminogênio/genética , Estabilidade Proteica , Estrutura Secundária de Proteína , Termodinâmica
15.
J Mol Biol ; 411(2): 417-29, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21669207

RESUMO

A key regulatory step for serine proteases of the trypsin clan is activation of the initially secreted zymogens, leading to an increase in activity by orders of magnitude. Zymogen activation occurs by cleavage of a single peptide bond near the N-terminus of the catalytic domain. Besides the catalytic domain, most serine proteases have N-terminal A-chains with independently folded domains. Little is known about how zymogen activation affects the interplay between domains. This question is investigated with urokinase-type plasminogen activator (uPA), which has an epidermal growth factor domain and a kringle domain, connected to the catalytic domain by a 15-residue linker. uPA has been implicated under several pathological conditions, and one possibility for pharmacological control is targeting the conversion of the zymogen pro-uPA to active uPA. Therefore, a small-angle X-ray scattering study of the conformations of pro-uPA and uPA in solution was performed. Structural models for the proteins were derived using available atomic-resolution structures for the various domains. Active uPA was found to be flexible with a random conformation of the amino-terminal fragment domain with respect to the serine protease domain. In contrast, pro-uPA was observed to be rigid, with the amino-terminal fragment domain in a fixed position with respect to the serine protease domain. Analytical ultracentrifugation analysis supported the observed difference between pro-uPA and uPA in overall shape and size seen with small-angle X-ray scattering. Upon association of either of two monoclonal Fab (fragment antigen-binding) fragments that are directed against the catalytic domain of, respectively, pro-uPA and uPA, rigid structures were formed.


Assuntos
Precursores Enzimáticos/química , Serina Proteases/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/química , Precursores Enzimáticos/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Ultracentrifugação , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
16.
Am J Physiol Lung Cell Mol Physiol ; 301(2): L247-54, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21622848

RESUMO

Increased circulating and tissue levels of plasminogen activator inhibitor 1 (PAI-1) are often present in severe inflammatory states associated with neutrophil activation and accumulation and correlate with poor clinical outcome from many of these conditions. The mechanisms by which PAI-1 contributes to inflammation have not been fully delineated. In the present experiments, we found that addition of PAI-1 to neutrophil cultures diminished the rate of spontaneous and TNF-related apoptosis-inducing ligand-induced apoptotic cell death. The effects of PAI-1 on cell viability were associated with activation of antiapoptotic signaling pathways, including upregulation of PKB/Akt, Mcl-1, and Bcl-x(L). Although urokinase-plasminogen activator receptor, lipoprotein receptor-related protein, and vitronectin are primary ligands for PAI-1, these molecules were not involved in mediating its antiapoptotic properties. In contrast, blocking pertussis toxin-sensitive G protein-coupled receptors and selective inhibition of phosphatidylinositide 3-kinase reversed the ability of PAI-1 to extend neutrophil viability. The antiapoptotic effects of PAI-1 were also evident under in vivo conditions during LPS-induced acute lung injury, where enhanced apoptosis was present among neutrophils accumulating in the lungs of PAI-1(-/-) compared with PAI-1(+/+) mice. These results demonstrate a novel antiapoptotic role for PAI-1 that may contribute to its participation in neutrophil-associated inflammatory responses.


Assuntos
Apoptose/efeitos dos fármacos , Neutrófilos/fisiologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/farmacologia , Lesão Pulmonar Aguda/classificação , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Células Cultivadas , Ativação Enzimática , Proteínas de Ligação ao GTP/metabolismo , Lipopolissacarídeos , Pulmão/patologia , Pulmão/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Inibidor 1 de Ativador de Plasminogênio/deficiência , Receptores de Superfície Celular/metabolismo , Receptores de LDL/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Proteínas Recombinantes/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Vitronectina/metabolismo
17.
Protein Sci ; 20(2): 366-78, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21280128

RESUMO

Human plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor with a metastable active conformation. The lifespan of the active form of PAI-1 is modulated via interaction with the plasma protein, vitronectin, and various metal ions. These metal ions fall into two categories: Type I metals, including calcium, magnesium, and manganese, stabilize PAI-1 in the absence of vitronectin, whereas Type II metals, including cobalt, copper, and nickel, destabilize PAI-1 in the absence of vitronectin, but stabilize PAI-1 in its presence. To provide a mechanistic basis for understanding the unusual modulation of PAI-1 structure and activity, the binding characteristics and conformational effects of these two types of metals were further evaluated. Steady-state binding measurements using surface plasmon resonance indicated that both active and latent PAI-1 exhibit a dissociation constant in the low micromolar range for binding to immobilized nickel. Stopped-flow measurements of approach-to-equilibrium changes in intrinsic protein fluorescence indicated that the Type I and Type II metals bind in different modes that induce distinct conformational effects on PAI-1. Changes in the observed rate constants with varying concentrations of metal allowed accurate determination of binding affinities for cobalt, nickel, and copper, yielding dissociation constants of ∼40, 30, and 0.09 µM, respectively. Competition experiments that tested effects on PAI-1 stability were consistent with these measurements of affinity and indicate that copper binds tightly to PAI-1.


Assuntos
Metais Pesados/química , Inibidor 1 de Ativador de Plasminogênio/química , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Sítios de Ligação , Cloretos/química , Cloretos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Metais Pesados/metabolismo , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Espectrometria de Fluorescência , Ressonância de Plasmônio de Superfície , Temperatura
18.
Protein Sci ; 20(2): 353-65, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21280127

RESUMO

Human plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor with a metastable active conformation. Under physiological conditions, half of the inhibitor transitions to a latent state within 1-2 h. The interaction between PAI-1 and the plasma protein vitronectin prolongs this active lifespan by ∼50%. Previously, our group demonstrated that PAI-1 binds to resins using immobilized metal affinity chromatography (Day, U.S. Pat. 7,015,021 B2, March 21, 2006). In this study, the effect of these metals on function and stability was investigated by measuring the rate of the transition from the active to latent conformation. All metals tested showed effects on stability, with the majority falling into one of two types depending on their effects. The first type of metal, which includes magnesium, calcium and manganese, invoked a slight stabilization of the active conformation of PAI-1. A second category of metals, including cobalt, nickel and copper, showed the opposite effects and a unique vitronectin-dependent modulation of PAI-1 stability. This second group of metals significantly destabilized PAI-1, although the addition of vitronectin in conjunction with these metals resulted in a marked stabilization and slower conversion to the latent conformation. In the presence of copper and vitronectin, the half-life of active PAI-1 was extended to 3 h, compared to a half-life of only ∼30 min with copper alone. Nickel had the largest effect, reducing the half-life to ∼5 min. Together, these data demonstrate a heretofore-unknown role for metals in modulating PAI-1 stability.


Assuntos
Cálcio/metabolismo , Magnésio/metabolismo , Metais Pesados/metabolismo , Inibidor 1 de Ativador de Plasminogênio/química , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Sítios de Ligação , Cálcio/química , Cloretos/química , Cloretos/metabolismo , Cromatografia de Afinidade , Eletroforese em Gel de Poliacrilamida , Humanos , Cinética , Magnésio/química , Metais Pesados/química , Estabilidade Proteica , Somatomedinas/química , Somatomedinas/metabolismo , Vitronectina/química , Vitronectina/metabolismo
19.
Eur J Neurosci ; 30(8): 1451-60, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19811533

RESUMO

The mammalian circadian clock in the suprachiasmatic nucleus (SCN) maintains environmental synchrony through light signals transmitted by glutamate released from retinal ganglion terminals. Brain-derived neurotrophic factor (BDNF) is required for light/glutamate to reset the clock. In the hippocampus, BDNF is activated by the extracellular protease, plasmin, which is produced from plasminogen by tissue-type plasminogen activator (tPA). We provide data showing expression of proteins from the plasminogen activation cascade in the SCN and their involvement in circadian clock phase-resetting. Early night glutamate application to SCN-containing brain slices resets the circadian clock. Plasminogen activator inhibitor-1 (PAI-1) blocked these shifts in slices from wild-type mice but not mice lacking its stabilizing protein, vitronectin (VN). Plasmin, but not plasminogen, prevented inhibition by PAI-1. Both plasmin and active BDNF reversed alpha(2)-antiplasmin inhibition of glutamate-induced shifts. alpha(2)-Antiplasmin decreased the conversion of inactive to active BDNF in the SCN. Finally, both tPA and BDNF allowed daytime glutamate-induced phase-resetting. Together, these data are the first to demonstrate expression of these proteases in the SCN, their involvement in modulating photic phase-shifts, and their activation of BDNF in the SCN, a potential 'gating' mechanism for photic phase-resetting. These data also demonstrate a functional interaction between PAI-1 and VN in adult brain. Given the usual association of these proteins with the extracellular matrix, these data suggest new lines of investigation into the locations and processes modulating mammalian circadian clock phase-resetting.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Fibrinolisina/metabolismo , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleo Supraquiasmático/fisiologia , Ativador de Plasminogênio Tecidual/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Ritmo Circadiano/fisiologia , Interações Medicamentosas , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Ácido Glutâmico/farmacologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Núcleo Supraquiasmático/citologia , Ativador de Plasminogênio Tecidual/farmacologia , Vitronectina/deficiência
20.
Biochemistry ; 48(8): 1723-35, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19193026

RESUMO

In order to explore early events during the association of plasminogen activator inhibitor-1 (PAI-1) with its cofactor vitronectin, we have applied a robust strategy that combines protein engineering, fluorescence spectroscopy, and rapid reaction kinetics. Fluorescence stopped-flow experiments designed to monitor the rapid association of PAI-1 with vitronectin indicate a fast, concentration-dependent, biphasic binding of PAI-1 to native vitronectin but only a monophasic association with the somatomedin B (SMB) domain, suggesting that multiple phases of the binding interaction occur only when full-length vitronectin is present. Nonetheless, in all cases, the initial fast interaction is followed by slower fluorescence changes attributed to a conformational change in PAI-1. Complementary experiments using an engineered, fluorescently silent PAI-1 with non-natural amino acids showed that concomitant structural changes occur as well in native vitronectin. Furthermore, we have measured the effect of vitronectin on the rate of insertion of the reactive center loop into beta-sheet A of PAI-1 during reaction with target proteases. With a variety of PAI-1 variants, we observe that both full-length vitronectin and the SMB domain have protease-specific effects on the rate of loop insertion but that the two exhibit clearly different effects. These results support a model for PAI-1 binding to vitronectin in which the interaction surface extends beyond the region of PAI-1 occupied by the SMB domain. In support of this model are recent results that define a PAI-1-binding site on vitronectin that lies outside the somatomedin B domain (Schar, C. R., Blouse, G. E., Minor, K. H., and Peterson, C. B. (2008) J. Biol. Chem. 283, 10297-10309) and the complementary site on PAI-1 (Schar, C. R., Jensen, J. K., Christensen, A., Blouse, G. E., Andreasen, P. A., and Peterson, C. B. (2008) J. Biol. Chem. 283, 28487-28496).


Assuntos
Inibidor 1 de Ativador de Plasminogênio/química , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Vitronectina/química , Vitronectina/metabolismo , Sítios de Ligação , Fluorescência , Corantes Fluorescentes/metabolismo , Humanos , Cinética , Modelos Moleculares , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Propriedades de Superfície , Triptofano/metabolismo , Vitronectina/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA