Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transl Oncol ; 28: 101599, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36516639

RESUMO

Dielectrophoresis (DEP) represents an electrokinetic approach for discriminating and separating suspended cells based on their intrinsic dielectric characteristics without the need for labeling procedure. A good practice, beyond the physical and engineering components, is the selection of a buffer that does not hinder cellular and biochemical parameters as well as cell recovery. In the present work the impact of four buffers on biochemical, morphological, and mechanical parameters was evaluated in two different cancer cell lines (Caco-2 and K562). Specifically, MTT ([3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]) assay along with flow cytometry analysis were used to evaluate the occurring changes in terms of cell viability, morphology, and granulocyte stress formation, all factors directly influencing DEP sorting capability. Quantitative real-time PCR (qRT-PCR) was instead employed to evaluate the gene expression levels of interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS), two well-known markers of inflammation and oxidative stress, respectively. An additional marker representing an index of cellular metabolic status, i.e. the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene, was also evaluated. Among the four buffers considered, two resulted satisfactory in terms of cell viability and growth recovery (24 h), with no significant changes in cell morphology for up to 1 h in suspension. Of note, gene expression analysis showed that in both cell lines the apparently non-cytotoxic buffers significantly modulated IL-6, iNOS, and GAPDH markers, underlining the importance to deeply investigate the molecular and biochemical changes occurring during the analysis, even at apparently non-toxic conditions. The selection of a useful buffer for the separation and analysis of cells without labeling procedures, preserving cell status, represents a key factor for DEP analysis, giving the opportunity to further use cells for additional analysis.

2.
Micromachines (Basel) ; 13(2)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35208384

RESUMO

Standard DEP theory, based on the Clausius-Mossotti (CM) factor derived from solving the boundary-value problem of macroscopic electrostatics, fails to describe the dielectrophoresis (DEP) data obtained for 22 different globular proteins over the past three decades. The calculated DEP force appears far too small to overcome the dispersive forces associated with Brownian motion. An empirical theory, employing the equivalent of a molecular version of the macroscopic CM-factor, predicts a protein's DEP response from the magnitude of the dielectric ß-dispersion produced by its relaxing permanent dipole moment. A new theory, supported by molecular dynamics simulations, replaces the macroscopic boundary-value problem with calculation of the cross-correlation between the protein and water dipoles of its hydration shell. The empirical and formal theory predicts a positive DEP response for protein molecules up to MHz frequencies, a result consistently reported by electrode-based (eDEP) experiments. However, insulator-based (iDEP) experiments have reported negative DEP responses. This could result from crystallization or aggregation of the proteins (for which standard DEP theory predicts negative DEP) or the dominating influences of electrothermal and other electrokinetic (some non-linear) forces now being considered in iDEP theory.

3.
Electrophoresis ; 42(5): 513-538, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33084076

RESUMO

Globular proteins exhibit dielectrophoresis (DEP) responses in experiments where the applied field gradient factor ∇E2 appears far too small, according to standard DEP theory, to overcome dispersive forces associated with the thermal energy kT of disorder. To address this a DEP force equation is proposed that replaces a previous empirical relationship between the macroscopic and microscopic forms of the Clausius-Mossotti factor. This equation relates the DEP response of a protein directly to the dielectric increment δε+ and decrement δε- that characterize its ß-dispersion at radio frequencies, and also indirectly to its intrinsic dipole moment by way of providing a measure of the protein's effective volume. A parameter Γpw , taken as a measure of cross-correlated dipole interactions between the protein and its water molecules of hydration, is included in this equation. For 9 of the 12 proteins, for which an evaluation can presently be made, Γpw has a value of ≈4600 ± 120. These conclusions follow an analysis of the failure of macroscopic dielectric mixture (effective medium) theories to predict the dielectric properties of solvated proteins. The implication of a polarizability greatly exceeding the intrinsic value for a protein might reflect the formation of relaxor ferroelectric nanodomains in its hydration shell.


Assuntos
Eletroforese , Proteínas , Condutividade Elétrica , Modelos Químicos , Proteínas/análise , Proteínas/química , Proteínas/isolamento & purificação
4.
Micromachines (Basel) ; 11(5)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32456059

RESUMO

The dielectrophoresis (DEP) data reported in the literature since 1994 for 22 different globular proteins is examined in detail. Apart from three cases, all of the reported protein DEP experiments employed a gradient field factor ∇Em2 that is much smaller (in some instances by many orders of magnitude) than the ~4 1021 V2/m3 required, according to current DEP theory, to overcome the dispersive forces associated with Brownian motion. This failing results from the macroscopic Clausius-Mossotti (CM) factor being restricted to the range 1.0 > CM > -0.5. Current DEP theory precludes the protein's permanent dipole moment (rather than the induced moment) from contributing to the DEP force. Based on the magnitude of the ß-dispersion exhibited by globular proteins in the frequency range 1 kHz-50 MHz, an empirically derived molecular version of CM is obtained. This factor varies greatly in magnitude from protein to protein (e.g., ~37,000 for carboxypeptidase; ~190 for phospholipase) and when incorporated into the basic expression for the DEP force brings most of the reported protein DEP above the minimum required to overcome dispersive Brownian thermal effects. We believe this empirically-derived finding validates the theories currently being advanced by Matyushov and co-workers.

5.
Biomicrofluidics ; 13(6): 060401, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31867085

RESUMO

This special collection of Biomicrofluidics serves as a Festschrift to honor Professor Hsueh-Chia Chang, Bayer Professor at the Department of Chemical and Biomolecular Engineering, University of Notre Dame. We acknowledge not only his role as Chief and Founding Editor of Biomicrofluidics (from 2006 through 2018) but also his seminal contributions as a researcher in micro/nanofluidics, particularly in the area of nanoelectrokinetics. This research has also been recognized by the 2018 Lifetime Achievement Award of the AES Electrophoresis Society to him.

6.
Electrophoresis ; 40(18-19): 2575-2583, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30861572

RESUMO

Dielectrophoresis (DEP) studies have progressed from the microscopic scale of cells and bacteria, through the mesoscale of virions to the molecular scale of DNA and proteins. The Clausius-Mossotti function, based on macroscopic electrostatics, is invariably employed in the analyses of all these studies. The limitations of this practice are explored, with the conclusion that it should be abandoned for the DEP study of proteins and modified for native DNA. For macromolecular samples in general, a DEP theory that incorporates molecular-scale interactions and the influence of permanent dipoles is more appropriate. Experimental ways to test these conclusions are proposed.


Assuntos
Fenômenos Eletromagnéticos , Eletroforese , Substâncias Macromoleculares/análise , Substâncias Macromoleculares/química , Impedância Elétrica , Modelos Químicos
7.
Electrophoresis ; 39(7): 989-997, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29274244

RESUMO

Dielectrophoresis (DEP) has been widely studied for its potential as a biomarker-free method of sorting and characterizing cells based upon their dielectric properties. Most studies have employed voltage signals from ∼1 kHz to no higher than ∼30 MHz. Within this range a transition from negative to positive DEP can be observed at the cross-over frequency fx01 . The value of fx01 is determined by the conductivity of the suspending medium, as well as the size and shape of the cell and the dielectric properties (capacitance, conductivity) of its plasma membrane. In this work DEP measurements were performed up to 400 MHz, where the transition from positive to negative DEP can be observed at a higher cross-over frequency fx02 . SP2/O murine myeloma cells were suspended in buffer media of different osmolarities and measurements taken of cell volume, fx01 and fx02 . Potassium-binding benzofuran isophthalate (PBFI), a potassium-sensitive fluorophore, and flow cytometry was employed to monitor relative changes in intracellular potassium concentration. In agreement with theory, it was found that fx02 is independent of the cell parameters that control fx01 and is predominantly determined by intracellular conductivity. In particular, the value of fx02 is highly correlated to that of the intracellular potassium concentration.


Assuntos
Separação Celular/métodos , Citoplasma/metabolismo , Pressão Osmótica/fisiologia , Potássio/análise , Animais , Benzofuranos/química , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Tamanho Celular , Condutividade Elétrica , Eletrodos , Eletroforese , Corantes Fluorescentes/química , Espaço Intracelular/metabolismo , Camundongos , Mieloma Múltiplo/metabolismo , Ondas de Rádio
8.
Biosens Bioelectron ; 81: 487-494, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27016627

RESUMO

Current approaches to molecular diagnostics rely heavily on PCR amplification and optical detection methods which have restrictions when applied to point of care (POC) applications. Herein we describe the development of a label-free and amplification-free method of pathogen detection applied to Escherichia coli which overcomes the bottleneck of complex sample preparation and has the potential to be implemented as a rapid, cost effective test suitable for point of care use. Ribosomal RNA is naturally amplified in bacterial cells, which makes it a promising target for sensitive detection without the necessity for prior in vitro amplification. Using fluorescent microarray methods with rRNA targets from a range of pathogens, an optimal probe was selected from a pool of probe candidates identified in silico. The specificity of probes was investigated on DNA microarray using fluorescently labeled 16S rRNA target. The probe yielding highest specificity performance was evaluated in terms of sensitivity and a LOD of 20 pM was achieved on fluorescent glass microarray. This probe was transferred to an EIS end point format and specificity which correlated to microarray data was demonstrated. Excellent sensitivity was facilitated by the use of uncharged PNA probes and large 16S rRNA target and investigations resulted in an LOD of 50 pM. An alternative kinetic EIS assay format was demonstrated with which rRNA could be detected in a species specific manner within 10-40min at room temperature without wash steps.


Assuntos
Técnicas Biossensoriais/métodos , Espectroscopia Dielétrica/métodos , Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Técnicas Biossensoriais/instrumentação , Espectroscopia Dielétrica/instrumentação , Desenho de Equipamento , Humanos , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
9.
Adv Drug Deliv Rev ; 65(11-12): 1589-99, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24056182

RESUMO

Dielectrophoresis (DEP) is an electrokinetic technique with proven ability to discriminate and selectively manipulate cells based on their phenotype and physiological state, without the need for biological tags and markers. The DEP response of a cell is predominantly determined by the physico-chemical properties of the plasma membrane, subtle changes of which can be detected from two so-called 'cross-over' frequencies, f(xo1) and f(xo2). Membrane capacitance and structural changes can be monitored by measurement of f(xo1) at sub-megahertz frequencies, and current indications suggest that f(xo2), located above 100 MHz, is sensitive to changes of trans-membrane ion fluxes. DEP lends itself to integration in microfluidic devices and can also operate at the nanoscale to manipulate nanoparticles. Apart from measurements of f(xo1) and f(xo2), other examples where DEP could contribute to drug discovery and delivery include its ability to: enrich stem cells according to their differentiation potential, and to engineer artificial cell structures and nano-structures.


Assuntos
Sistemas de Liberação de Medicamentos , Descoberta de Drogas/métodos , Eletroforese/métodos , Diferenciação Celular , Membrana Celular/metabolismo , Humanos , Nanopartículas , Células-Tronco
10.
Biosens Bioelectron ; 34(1): 178-84, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22365363

RESUMO

Using electrochemical impedance spectroscopy (EIS) the sensitive and specific detection of the antibiotic resistance gene mecA has been demonstrated. The gene sequence was obtained from clinical Staphylococcus aureus isolates. Initially a mecA specific probe was selected from hybridisation tests with a 3' and 5' version of a previously published probe sequence. When immobilised on a gold electrode in PNA form it was possible to detect hybridisation of mecA PCR product electrochemically at concentrations as low as 10nM. By incorporating an undecane-thiol and 1.8 nm glycol spacer into the PNA probe it was possible to extend the limit of detection for mecA to 10 pM. Most published studies on EIS and nucleic acid detection report the use of short artificial DNA sequences or novel signal amplification schemes which improve sensitivity whereas this study reports the successful detection of long DNA fragments produced by PCR following extraction from clinical isolates. Finally, using screen printed electrodes the paper demonstrates hybridisation monitoring of mecA in an "on-line" assay format under ambient conditions which paves the way for rapid mecA detection in point of care scenarios.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Espectroscopia Dielétrica/métodos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Reação em Cadeia da Polimerase , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , Limite de Detecção , Resistência a Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/genética , Hibridização de Ácido Nucleico , Proteínas de Ligação às Penicilinas
11.
Biotechniques ; 52(1): 39-43, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22229726

RESUMO

The selection, isolation, and accurate positioning of single cells in three dimensions are increasingly desirable in many areas of cell biology and tissue engineering. We describe the application of a simple and low cost dielectrophoretic device for picking out and relocating single target cells. The device consists of a single metal electrode and an AC signal generator. It does not require microfabrication technologies or sophisticated electronics. The dielectrophoretic manipulator also discriminates between live and dead cells and is capable of redistributing intracellular organelles.


Assuntos
Eletroforese/métodos , Organelas , Análise de Célula Única/métodos , Animais , Separação Celular/métodos , Sobrevivência Celular , Cricetinae , Cricetulus , Eletroforese/instrumentação , Desenho de Equipamento , Células HeLa , Humanos , Microeletrodos
12.
Biosens Bioelectron ; 31(1): 413-8, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22137369

RESUMO

A method for label-free, electrochemical impedance immunosensing for the detection and quantification of three infection biomarkers in both buffer and directly in the defined model matrix of mock wound fluid is demonstrated. Triggering Receptor-1 Expressed on Myeloid cells (TREM-1) and Matrix MetalloPeptidase 9 (MMP-9) are detected via direct assay and N-3-oxo-dodecanoyl-l-HomoSerineLactone (HSL), relevant in bacterial quorum sensing, is detected using a competition assay. Detection is performed with gold screen-printed electrodes modified with a specific thiolated antibody. Detection is achieved in less than 1h straight from mock wound fluid without any extensive sample preparation steps. The limits of detection of 3.3 pM for TREM-1, 1.1 nM for MMP-9 and 1.4 nM for HSL are either near or below the threshold required to indicate infection. A relatively large dynamic range for sensor response is also found, consistent with interaction between neighbouring antibody-antigen complexes in the close-packed surface layer. Together, these three novel electrochemical immunosensors demonstrate viable multi-parameter sensing with the required sensitivity for rapid wound infection detection directly from a clinically relevant specimen.


Assuntos
Biomarcadores/análise , Técnicas Biossensoriais/instrumentação , Condutometria/instrumentação , Citocinas/análise , Espectroscopia Dielétrica/instrumentação , Imunoensaio/instrumentação , Infecção dos Ferimentos/imunologia , Animais , Citocinas/imunologia , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Infecção dos Ferimentos/diagnóstico
13.
Biomicrofluidics ; 6(4): 44113, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24339846

RESUMO

Assessment of the dielectrophoresis (DEP) cross-over frequency (f xo), cell diameter, and derivative membrane capacitance (C m) values for a group of undifferentiated human embryonic stem cell (hESC) lines (H1, H9, RCM1, RH1), and for a transgenic subclone of H1 (T8) revealed that hESC lines could not be discriminated on their mean f xo and C m values, the latter of which ranged from 14 to 20 mF/m(2). Differentiation of H1 and H9 to a mesenchymal stem cell-like phenotype resulted in similar significant increases in mean C m values to 41-49 mF/m(2) in both lines (p < 0.0001). BMP4-induced differentiation of RCM1 to a trophoblast cell-like phenotype also resulted in a distinct and significant increase in mean C m value to 28 mF/m(2) (p < 0.0001). The progressive transition to a higher membrane capacitance was also evident after each passage of cell culture as H9 cells transitioned to a mesenchymal stem cell-like state induced by growth on a substrate of hyaluronan. These findings confirm the existence of distinctive parameters between undifferentiated and differentiating cells on which future application of dielectrophoresis in the context of hESC manufacturing can be based.

14.
Biomicrofluidics ; 6(3): 34113, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23940503

RESUMO

Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co-cultured with GFP-expressing MRC-5 fibroblasts of comparable size distributions (mean diameter ∼10 µm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account.

15.
Biomicrofluidics ; 6(2): 24133, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23805171

RESUMO

Isolation and enumeration of circulating tumor cells (CTCs) are used to monitor metastatic disease progression and guide cancer therapy. However, currently available technologies are limited to cells expressing specific cell surface markers, such as epithelial cell adhesion molecule (EpCAM) or have limited specificity because they are based on cell size alone. We developed a device, ApoStream(™) that overcomes these limitations by exploiting differences in the biophysical characteristics between cancer cells and normal, healthy blood cells to capture CTCs using dielectrophoretic technology in a microfluidic flow chamber. Further, the system overcomes throughput limitations by operating in continuous mode for efficient isolation and enrichment of CTCs from blood. The performance of the device was optimized using a design of experiment approach for key operating parameters such as frequency, voltage and flow rates, and buffer formulations. Cell spiking studies were conducted using SKOV3 or MDA-MB-231 cell lines that have a high and low expression level of EpCAM, respectively, to demonstrate linearity and precision of recovery independent of EpCAM receptor levels. The average recovery of SKOV3 and MDA-MB-231 cancer cells spiked into approximately 12 × 10(6) peripheral blood mononuclear cells obtained from 7.5 ml normal human donor blood was 75.4% ± 3.1% (n = 12) and 71.2% ± 1.6% (n = 6), respectively. The intra-day and inter-day precision coefficients of variation of the device were both less than 3%. Linear regression analysis yielded a correlation coefficient (R(2)) of more than 0.99 for a spiking range of 4-2600 cells. The viability of MDA-MB-231 cancer cells captured with ApoStream was greater than 97.1% and there was no difference in cell growth up to 7 days in culture compared to controls. The ApoStream device demonstrated high precision and linearity of recovery of viable cancer cells independent of their EpCAM expression level. Isolation and enrichment of viable cancer cells from ApoStream enables molecular characterization of CTCs from a wide range of cancer types.

16.
Biomicrofluidics ; 5(2): 24116, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21799722

RESUMO

The manipulation of ribosomal RNA (rRNA) extracted from E. coli cells by dielectrophoresis (DEP) has been demonstrated over the range of 3 kHz-50 MHz using interdigitated microelectrodes. Quantitative measurement using total internal reflection fluorescence microscopy of the time dependent collection indicated a positive DEP response characterized by a plateau between 3 kHz and 1 MHz followed by a decrease in response at higher frequencies. Negative DEP was observed above 9 MHz. The positive DEP response below 1 MHz is described by the Clausius-Mossotti model and corresponds to an induced dipole moment of 3300 D with a polarizability of 7.8×10(-32) F m(2). The negative DEP response above 9 MHz indicates that the rRNA molecules exhibit a net moment of -250 D, to give an effective permittivity value of 78.5 ε(0), close to that of the aqueous suspending medium, and a relatively small surface conductance value of ∼0.1 nS. This suggests that our rRNA samples have a fairly open structure accessible to the surrounding water molecules, with counterions strongly bound to the charged phosphate groups in the rRNA backbone. These results are the first demonstration of DEP for fast capture and release of rRNA units, opening new opportunities for rRNA-based biosensing devices.

17.
Biomicrofluidics ; 5(4): 44109-4410916, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22662061

RESUMO

A modified theory is proposed for extracting cell dielectric properties from the peak frequency measurement of electrorotation (ER) and the crossover frequency measurement of dielectrophoresis (DEP). Current theory in the literature is based on the low frequency (DC) approximations for the equivalent cell permittivity and conductivity, which are valid when the measurements are performed in a medium with conductivity less than 1 mS/m. The present theory extracts the cell properties through optimizing an expression for the medium conductivity in terms of the peak ER, or DEP crossover, frequency according to its definition using full expressions of equivalent cell permittivity and conductivity. Various levels of approximation of the theory are proposed and discussed through a scaling analysis. The present theory can extract both membrane and interior properties from the low and the high peak ER, or DEP crossover, frequencies for any medium conductivity provided the peak ER, or DEP crossover, frequency exists. It can be reduced to the linear theory for the low peak ER and DEP crossover frequencies in the literature when the medium conductivity is less than 10 mS/m. However, we can determine the membrane capacitance and conductance via the slope and intercept, respectively, of the straight line fitting of the ER peak and DEP frequency against medium conductivity data according to the linear theory only when the intercept dominates the experimental uncertainty, which occurs when the medium conductivity is less than 1 mS/m in practice.

18.
Biomicrofluidics ; 4(2)2010 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-20697589

RESUMO

A review is presented of the present status of the theory, the developed technology and the current applications of dielectrophoresis (DEP). Over the past 10 years around 2000 publications have addressed these three aspects, and current trends suggest that the theory and technology have matured sufficiently for most effort to now be directed towards applying DEP to unmet needs in such areas as biosensors, cell therapeutics, drug discovery, medical diagnostics, microfluidics, nanoassembly, and particle filtration. The dipole approximation to describe the DEP force acting on a particle subjected to a nonuniform electric field has evolved to include multipole contributions, the perturbing effects arising from interactions with other cells and boundary surfaces, and the influence of electrical double-layer polarizations that must be considered for nanoparticles. Theoretical modelling of the electric field gradients generated by different electrode designs has also reached an advanced state. Advances in the technology include the development of sophisticated electrode designs, along with the introduction of new materials (e.g., silicone polymers, dry film resist) and methods for fabricating the electrodes and microfluidics of DEP devices (photo and electron beam lithography, laser ablation, thin film techniques, CMOS technology). Around three-quarters of the 300 or so scientific publications now being published each year on DEP are directed towards practical applications, and this is matched with an increasing number of patent applications. A summary of the US patents granted since January 2005 is given, along with an outline of the small number of perceived industrial applications (e.g., mineral separation, micropolishing, manipulation and dispensing of fluid droplets, manipulation and assembly of micro components). The technology has also advanced sufficiently for DEP to be used as a tool to manipulate nanoparticles (e.g., carbon nanotubes, nano wires, gold and metal oxide nanoparticles) for the fabrication of devices and sensors. Most efforts are now being directed towards biomedical applications, such as the spatial manipulation and selective separationenrichment of target cells or bacteria, high-throughput molecular screening, biosensors, immunoassays, and the artificial engineering of three-dimensional cell constructs. DEP is able to manipulate and sort cells without the need for biochemical labels or other bioengineered tags, and without contact to any surfaces. This opens up potentially important applications of DEP as a tool to address an unmet need in stem cell research and therapy.

19.
Biomicrofluidics ; 4(2)2010 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-20697598

RESUMO

Progress in microelectrode-based technologies has facilitated the development of sophisticated methods for manipulating and separating cells, bacteria, and other bioparticles. For many of these various applications, the theoretical modeling of the electrical response of compartmentalized particles to an external field is important. In this paper we address the analysis of the interaction between cells immersed in rf fields. We use an integral formulation of the problem derived from a consideration of the charge densities induced at the interfaces of the particle compartments. The numerical solution by a boundary element technique allows characterization of their dielectric properties. Experimental validation of this theoretical model is obtained by investigating two effects: (1) The influence that dipolar "pearl chaining" has on the dielectrophoretic behavior of human T lymphocytes and (2) the frequency variation of the spin and orbital torques of approaching insulinoma beta-cells in a rotating field.

20.
J Biomed Biotechnol ; 2010: 182581, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20490279

RESUMO

Dielectrophoresis can discriminate distinct cellular identities in heterogeneous populations, and monitor cell state changes associated with activation and clonal expansion, apoptosis, and necrosis, without the need for biochemical labels. Demonstrated capabilities include the enrichment of haematopoetic stem cells from bone marrow and peripheral blood, and adult stem cells from adipose tissue. Recent research suggests that this technique can predict the ultimate fate of neural stem cells after differentiation before the appearance of specific cell-surface proteins. This review summarises the properties of cells that contribute to their dielectrophoretic behaviour, and their relevance to stem cell research and translational applications.


Assuntos
Eletroforese/métodos , Células-Tronco/fisiologia , Animais , Pesquisa Biomédica/métodos , Separação Celular/métodos , Humanos , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA