Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Energy Fuels ; 38(13): 11947-11965, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38984060

RESUMO

The use of adsorbents for direct air capture (DAC) of CO2 is regarded as a promising and essential carbon dioxide removal technology to help meet the goals outlined by the 2015 Paris Agreement. A class of adsorbents that has gained significant attention for this application is ultramicroporous metal organic frameworks (MOFs). However, the necessary data needed to facilitate process scale evaluation of these materials is not currently available. Here, we investigate TIFSIX-3-Ni, a previously reported ultramicroporous MOF for DAC, and measure several physicochemical and equilibrium adsorption properties. We report its crystal structure, textural properties, thermal stability, specific heat capacity, CO2, N2, and H2O equilibrium adsorption isotherms at multiple temperatures, and Ar and O2 isotherms at a single temperature. For CO2, N2, and H2O, we also report isotherm model fitting parameters and calculate heats of adsorption. We assess the manufacturability and process stability of TIFSIX-3-Ni by investigating the impact of batch reproducibility, binderless pelletization, humidity, and adsorption-desorption cycling (50 cycles) on its crystal structure, textural properties, and CO2 adsorption. For pelletized TIFSIX-3-Ni, we also report its skeletal, pellet, and bed density, total pore volume, and pellet porosity. Overall, our data enable initial process modeling and optimization studies to evaluate TIFSIX-3-Ni for DAC at the process scale. They also highlight the possibility to pelletize TIFSIX-3-Ni and the limited stability of the MOF under humid and oxidative conditions as well as upon multiple adsorption-desorption cycles.

2.
J Chem Eng Data ; 68(12): 3512-3524, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38115914

RESUMO

The equilibrium adsorption of CO2, N2, and H2 on commercially available Zeolite H-Y, Na-Y, and cation-exchanged NaTMA-Y was measured up to 3 MPa at 298.15, 313.15, 333.15, 353.15, and 393.15 K gravimetrically using a magnetic suspension balance. The chemical and textural characterization of the materials was carried out by thermogravimetric analysis, helium gravimetry, and N2 (77 K) physisorption. We report the excess and net isotherms as measured and estimates of the absolute adsorption isotherms. The latter are modeled using the simplified statistical isotherm (SSI) model to evaluate adsorbate-adsorbent interactions and parametrize the data for process modeling. When reported per unit volume of zeolite supercage, the SSI model indicates that the saturation capacity for a given gas takes the same value for the three adsorbents. The Henry's constants predicted by the model show a strong effect of the cation on the affinity of each adsorbate.

3.
J Chem Eng Data ; 68(12): 3499-3511, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38115913

RESUMO

Direct air capture (DAC) using solid adsorbents has gained significant attention as a carbon dioxide removal (CDR) technology to help limit global temperature rise to below 2 °C. One large area of focus is the development of new adsorbent materials for DAC. However, the necessary data needed to employ these materials in process models for adsorbent screening are rarely available. Here, we showcase Purolite A110, a commercially available amine-functionalized polymeric resin, as a new candidate adsorbent for DAC and compare its properties to a current benchmark, Lewatit VP OC 1065. For both materials, we report their chemical features and composition, skeletal, particle, and bed density, total pore volume, particle porosity, BET area, thermal stability, and specific heat capacity. We determine their equilibrium sorption properties by measuring the volumetric CO2 isotherms at 288, 298, 308, 333, 343, 353, and 393 K, N2 and H2O isotherms at 288, 298, and 308 K, and Ar and O2 isotherms at 298 K. For CO2, N2, and H2O, we also present the corresponding isotherm model fitting parameters and heats of adsorption. These data can help facilitate process modeling and optimization studies to properly assess these adsorbents at scale.

4.
Acc Mater Res ; 4(2): 143-155, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36873082

RESUMO

The research of new porous materials for applications in interfacial processes is key to addressing global energy and sustainability challenges. For example, porous materials can be used to store fuels such as hydrogen or methane or to separate chemical mixtures reducing the energy currently required by thermal separation processes. Their catalytic properties can be exploited to convert adsorbed molecules into valuable or less hazardous chemicals, thereby reducing energy consumption or pollutants emissions. Porous boron nitride (BN) has appeared as a promising material for applications in molecular separations, gas storage, and catalysis owing to its high surface area and thermal stability, as well as its tunable physical properties and chemistry. However, the production of porous BN is still limited to the laboratory scale, and its formation mechanism, as well as ways to control porosity and chemistry, are yet to be fully understood. In addition, studies have pointed toward the instability of porous BN materials when exposed to humidity, which could significantly impact performance in industrial applications. Studies on porous BN performance and recyclability when employed in adsorption, gas storage, and catalysis remain limited, despite encouraging preliminary studies. Moreover, porous BN powder must be shaped into macrostructures (e.g., pellets) to be used commercially. However, common methods to shape porous materials into macrostructures often cause a reduction in the surface area and/or mechanical strength. In recent years, research groups, including ours, have started addressing the challenges discussed above. Herein, we summarize our collective findings through a selection of key studies. First, we discuss the chemistry and structure of BN, clarifying confusion around terminology and discussing the hydrolytic instability of the material in relation to its structure and chemistry. We demonstrate a way to reduce the instability in water while still maintaining high specific surface area. We propose a mechanism for the formation of porous BN and discuss the effects of different synthesis parameters on the structure and chemistry of porous BN, therefore providing a way to tune its properties for selected applications. While the syntheses covered often lead to a powder product, we also present ways to shape porous BN powders into macrostructures while still maintaining high accessible surface area for interfacial processes. Finally, we evaluate porous BN performance for chemical separations, gas storage, and catalysis. While the above highlights key advances in the field, further work is needed to allow deployment of porous BN. Specifically, we suggest evaluating its hydrolytic stability, refining the ways to shape the material into stable and reproducible macrostructures, establishing clear design rules to produce BN with specific chemistry and porosity, and, finally, providing standardized test procedures to evaluate porous BN catalytic and sorptive properties to facilitate comparison.

5.
Chem Mater ; 35(5): 1858-1867, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936177

RESUMO

A family of boron nitride (BN)-based photocatalysts for solar fuel syntheses have recently emerged. Studies have shown that oxygen doping, leading to boron oxynitride (BNO), can extend light absorption to the visible range. However, the fundamental question surrounding the origin of enhanced light harvesting and the role of specific chemical states of oxygen in BNO photochemistry remains unanswered. Here, using an integrated experimental and first-principles-based computational approach, we demonstrate that paramagnetic isolated OB3 states are paramount to inducing prominent red-shifted light absorption. Conversely, we highlight the diamagnetic nature of O-B-O states, which are shown to cause undesired larger band gaps and impaired photochemistry. This study elucidates the importance of paramagnetism in BNO semiconductors and provides fundamental insight into its photophysics. The work herein paves the way for tailoring of its optoelectronic and photochemical properties for solar fuel synthesis.

6.
J Mater Chem A Mater ; 10(38): 20580-20592, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36324859

RESUMO

Porous boron nitride (BN) displays promising properties for interfacial and bulk processes, e.g. molecular separation and storage, or (photo)catalysis. To maximise porous BN's potential in such applications, tuning and controlling its chemical and structural features is key. Functionalisation of porous BN with metal nanoparticle represents one possible route, albeit a hardly explored one. Metal-organic frameworks (MOFs) have been widely used as precursors to synthesise metal functionalised porous carbon-based materials, yet MOF-derived metal functionalised inorganic porous materials remain unexplored. Here, we hypothesise that MOFs could also serve as a platform to produce metal-functionalised porous BN. We have used a Cu-containing MOF, i.e. Cu/ZIF-8, as a precursor and successfully obtained porous BN functionalised with Cu nanoparticles (i.e. Cu/BN). While we have shown control of the Cu content, we have not yet demonstrated it for the nanoparticle size. The functionalisation has led to improved light harvesting and enhanced electron-hole separation, which have had a direct positive impact on the CO2 photoreduction activity (production formation rate 1.5 times higher than pristine BN and 12.5 times higher than g-C3N4). In addition, we have found that the metal in the MOF precursor impacts porous BN's purity. Unlike Cu/ZIF-8, a Co-containing ZIF-8 precursor led to porous C-BN (i.e. BN with a large amount of C in the structure). Overall, given the diversity of metals in MOFs, one could envision our approach as a method to produce a library of different metal functionalised porous BN samples.

7.
J Phys Chem B ; 126(40): 8048-8057, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36170038

RESUMO

Numerous hyper-cross-linked polymers (HCPs) have been developed as CO2 adsorbents and photocatalysts. Yet, little is known of the CO2 and H2O adsorption mechanisms on amorphous porous polymers. Gaining a better understanding of these mechanisms and determining the adsorption sites are key to the rational design of improved adsorbents and photocatalysts. Herein, we present a unique approach that combines density functional theory (DFT), in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and multivariate spectral analysis to investigate CO2 and H2O adsorption sites on a triazine-biphenyl HCP. We found that CO2 and H2O adsorb on the same HCP sites albeit with different adsorption strengths. The primary amines of the triazines were identified as favoring strong CO2 binding interactions. Given the potential use of HCPs for CO2 photoreduction, we also investigated CO2 and H2O adsorption under transient light irradiation. Under irradiation, we observed partial CO2 and H2O desorption and a redistribution of interactions between the H2O and CO2 molecules that remain adsorbed at HCP adsorption sites.

8.
Chem Mater ; 34(15): 6671-6686, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35965891

RESUMO

Shaped adsorbents (e.g., pellets, extrudates) are typically employed in several gas separation and sensing applications. The performance of these adsorbents is dictated by two key factors, their adsorption equilibrium capacity and kinetics. Often, adsorption equilibrium and textural properties are reported for materials. Adsorption kinetics are seldom presented due to the challenges associated with measuring them. The overarching goal of this work is to develop an approach to characterize the adsorption properties of individual shaped adsorbents with less than 100 mg of material. To this aim, we have developed an experimental dynamic sorption setup and complemented it with mathematical models, to describe the mass transport in the system. We embed these models into a derivative-free optimizer to predict model parameters for adsorption equilibrium and kinetics. We evaluate and independently validate the performance of our approach on three adsorbents that exhibit differences in their chemistry, synthesis, formulation, and textural properties. Further, we test the robustness of our mathematical framework using a digital twin. We show that the framework can rapidly (i.e., in a few hours) and quantitatively characterize adsorption properties at a milligram scale, making it suitable for the screening of novel porous materials.

9.
Eur J Clin Microbiol Infect Dis ; 41(6): 951-959, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35583717

RESUMO

Blood cultures detected as positive by the automated system but negative by microscopy and subculture are considered as "false-positives." Several causes have been identified, including hyperleukocytosis or the presence of fastidious bacteria, but as many cases remain unexplained we aimed to investigate the false positives occurring in our laboratory. We retrospectively collected data on blood cultures received over a period of 12 months to determine factors associated with the false-positive vials. We then prospectively validated our findings on the false-positive results occurring over a 3.5-month period. We finally applied scanning electron microscopy (SEM) on 63 false positives and molecular approaches on a subset of them. In the retrospective study, 154 (85%) of the 181 false-positive identified were positive following less than 4 h of incubation and were considered as "early false-positives." By performing ROC curves on these early false positives, we demonstrate that the absolute number of leukocytes is in fact the most discriminating factor of early false positivity (p < 0.001). This phenomenon can be the consequence of either a high blood culture volume (p < 0.001) or hyperleukocytosis (p < 0.001). In the prospective study, the use of a threshold of 219 million of leukocytes per vial enabled the identification of 97% of the early false positives. Finally, SEM and specific qPCR enabled three additional identifications while 16S rRNA/nanopore sequencing enabled the detection of Helicobacter cinaedi bacteremia and a polymicrobial infection. A high absolute number of leukocytes in blood cultures explains most false positives, thereby making it possible to target additional microbiological investigations.


Assuntos
Bacteriemia , Hemocultura , Bacteriemia/microbiologia , Reações Falso-Positivas , Humanos , Leucócitos , Estudos Prospectivos , RNA Ribossômico 16S , Estudos Retrospectivos
10.
ACS Appl Mater Interfaces ; 14(17): 19342-19352, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442614

RESUMO

Semiconductor/metal-organic framework (MOF) heterojunctions have demonstrated promising performance for the photoconversion of CO2 into value-added chemicals. To further improve performance, we must understand better the factors which govern charge transfer across the heterojunction interface. However, the effects of interfacial electric fields, which can drive or hinder electron flow, are not commonly investigated in MOF-based heterojunctions. In this study, we highlight the importance of interfacial band bending using two carbon nitride/MOF heterojunctions with either Co-ZIF-L or Ti-MIL-125-NH2. Direct measurement of the electronic structures using X-ray photoelectron spectroscopy (XPS), work function, valence band, and band gap measurements led to the construction of a simple band model at the heterojunction interface. This model, based on the heterojunction components and band bending, enabled us to rationalize the photocatalytic enhancements and losses observed in MOF-based heterojunctions. Using the insight gained from a promising band bending diagram, we developed a Type II carbon nitride/MOF heterojunction with a 2-fold enhanced CO2 photoreduction activity compared to the physical mixture.

11.
Chemphyschem ; 23(13): e202100854, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35393663

RESUMO

Porous boron nitride (BN), a combination of hexagonal, turbostratic and amorphous BN, has emerged as a new platform photocatalyst. Yet, this material lacks photoactivity under visible light. Theoretical studies predict that tuning the oxygen content in oxygen-doped BN (BNO) could lower the band gap. This is yet to be verified experimentally. We present herein a systematic experimental route to simultaneously tune BNO's chemical, magnetic and optoelectronic properties using a multivariate synthesis parameter space. We report deep visible range band gaps (1.50-2.90 eV) and tuning of the oxygen (2-14 at.%) and specific paramagnetic OB3 contents (7-294 a.u. g-1 ). Through designing a response surface via a design of experiments (DOE) process, we have identified synthesis parameters influencing BNO's chemical, magnetic and optoelectronic properties. We also present model prediction equations relating these properties to the synthesis parameter space that we have validated experimentally. This methodology can help tailor and optimise BN materials for heterogeneous photocatalysis.


Assuntos
Grafite , Compostos de Boro/química , Grafite/química , Fenômenos Magnéticos , Oxigênio/química
12.
ACS Sens ; 6(10): 3808-3821, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34643372

RESUMO

To detect multiple gases in a mixture, one must employ an electronic nose or sensor array, composed of several materials, as a single material cannot resolve all the gases in a mixture accurately. Given the many candidate materials, choosing the right combination of materials to be used in an array is a challenging task. In a sensor whose sensing mechanism depends on a change in mass upon gas adsorption, both the equilibrium and kinetic characteristics of the gas-material system dictate the performance of the array. The overarching goal of this work is twofold. First, we aim to highlight the impact of thermodynamic characteristics of gas-material combination on array performance and to develop a graphical approach to rapidly screen materials. Second, we aim to highlight the need to incorporate the gas sorption kinetic characteristics to provide an accurate picture of the performance of a sensor array. To address these goals, we have developed a computational test bench that incorporates a sensor model and a gas composition estimator. To provide a generic study, we have chosen, as candidate materials, hypothetical materials that exhibit equilibrium characteristics similar to those of metal-organic frameworks. Our computational studies led to key learnings, namely, (1) exploit the shape of the sensor response as a function of gas composition for material screening purposes for gravimetric arrays; (2) incorporate both equilibrium and kinetics for gas composition estimation in a dynamic system; and (3) engineer the array by accounting for the kinetics of the materials, the feed gas flow rate, and the size of the device.


Assuntos
Nariz Eletrônico , Gases , Adsorção , Cinética , Termodinâmica
13.
Chem Sci ; 12(36): 12068-12081, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34667572

RESUMO

The separation of CO/N2 mixtures is a challenging problem in the petrochemical sector due to the very similar physical properties of these two molecules, such as size, molecular weight and boiling point. To solve this and other challenging gas separations, one requires a holistic approach. The complexity of a screening exercise for adsorption-based separations arises from the multitude of existing porous materials, including metal-organic frameworks. Besides, the multivariate nature of the performance criteria that needs to be considered when designing an optimal adsorbent and a separation process - i.e. an optimal material requires fulfillment of several criteria simultaneously - makes the screening challenging. To address this, we have developed a multi-scale approach combining high-throughput molecular simulation screening, data mining and advanced visualization, as well as process system modelling, backed up by experimental validation. We have applied our recent advances in the engineering of porous materials' morphology to develop advanced monolithic structures. These conformed, shaped monoliths can be used readily in industrial applications, bringing a valuable strategy for the development of advanced materials. This toolbox is flexible enough to be applied to multiple adsorption-based gas separation applications.

14.
Environ Sci Technol ; 55(15): 10619-10632, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34241997

RESUMO

As more countries commit to a net-zero GHG emission target, we need a whole energy and industrial system approach to decarbonization rather than focus on individual emitters. This paper presents a techno-economic analysis of monoethanolamine-based post-combustion capture to explore opportunities over a diverse range of power and industrial applications. The following ranges were investigated: feed gas flow rate between 1-1000 kg ·s-1, gas CO2 concentrations of 2-42%mol, capture rates of 70-99%, and interest rates of 2-20%. The economies of scale are evident when the flue gas flow rate is <20 kg ·s-1 and gas concentration is below 20%mol CO2. In most cases, increasing the capture rate from 90 to 95% has a negligible impact on capture cost, thereby reducing CO2 emissions at virtually no additional cost. The majority of the investigated space has an operating cost fraction above 50%. In these instances, reducing the cost of capital (i.e., interest rate) has a minor impact on the capture cost. Instead, it would be more beneficial to reduce steam requirements. We also provide a surrogate model which can evaluate capture cost from inputs of the gas flow rate, CO2 composition, capture rate, interest rate, steam cost, and electricity cost.


Assuntos
Aminas , Dióxido de Carbono , Eletricidade , Etanolamina , Vapor
15.
ChemSusChem ; 14(7): 1720-1727, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33428301

RESUMO

The design of robust, high-performance photocatalysts is key for the success of solar fuel production by CO2 conversion. In this study, hypercrosslinked polymer (HCP) photocatalysts have been developed for the selective reduction of CO2 to CO, combining excellent CO2 sorption capacities, good general stabilities, and low production costs. HCPs are active photocatalysts in the visible light range, significantly outperforming the benchmark material, TiO2 P25, using only sacrificial H2 O. It is hypothesized that superior H2 O adsorption capacities facilitate access to photoactive sites, improving photocatalytic conversion rates when compared to sacrificial H2 . These polymers are an intriguing set of organic photocatalysts, displaying no long-range order or extended π-conjugation. The as-synthesized networks are the sole photocatalytic component, requiring no added cocatalyst doping or photosensitizer, representing a highly versatile and exciting platform for solar-energy conversion.

16.
J Clin Epidemiol ; 134: 14-21, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33508405

RESUMO

OBJECTIVE: We aimed at testing if a correlation between adverse drug reactions relative risks estimated from meta-analyses and disproportionality analyses calculated from pharmacovigilance spontaneous reporting systems databases exist, and if methodological choices modify this correlation. STUDY DESIGN: We extracted adverse drug reactions (ADR) odds ratios (ORs) from meta-analyses used as reference and calculated corresponding Reporting Odds Ratios (RORs) from the WHO pharmacovigilance database according to five different designs. We also calculated the relative bias and agreement of ROR compared to ORs. RESULTS: We selected five meta-analyses which displayed a panel of 13 ADRs. A significant correlation for 7 out of the 13 ADRs studied in the primary analysis was found. The methods for ROR calculation impacted the results but none systematically improved the correlations. Whereas correlation was found between OR and ROR, agreement was poor and relative bias was important. CONCLUSION: Despite the large variation in disproportionality analyses results due to design specification, this study provides further evidence that relative risks obtained from meta-analyses and from disproportionality analyses correlate in most cases, in particular for objective ADR not associated with the underlying pathology.


Assuntos
Sistemas de Notificação de Reações Adversas a Medicamentos/normas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Humanos , Metanálise como Assunto , Razão de Chances , Farmacovigilância , Organização Mundial da Saúde
17.
Water Res ; 184: 115986, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32683142

RESUMO

This work reports the novel application of an Fe-based 2D metal-organic framework (MOF), prepared with 2,2'-bipyridine-5,5'-dicarboxylate (bpydc) as organic linker, as highly active catalyst for heterogeneous photoelectro-Fenton (PEF) treatment of the lipid regulator bezafibrate in a model matrix and urban wastewater. Well-dispersed 2D structures were successfully synthesized and their morphological, physicochemical and photocatalytic properties were assessed. UV/Vis PEF using an IrO2/air-diffusion cell with an extremely low catalyst concentration (0.05 g L-1, tenfold lower than reported 3D MOFs) outperformed electro-oxidation with electrogenerated H2O2, electro-Fenton and visible-light PEF. Its excellent performance was explained by: (i) the enhanced mass transport of H2O2 (and organic molecules) at the 2D structure, providing active sites for heterogeneous Fenton's reaction and in-situ Fe(II) regeneration; (ii) the ability of photoinduced electrons to reduce H2O2 to •OH, and Fe(III) to Fe(II); and (iii) the enhanced charge transfer and excitation of Fe-O clusters, which increased the number of electron-hole pairs. LC-QToF-MS and GC-MS allowed the identification of 16 aromatic products of bezafibrate. The complete removal of four micropollutants mixed in urban wastewater at pH 7.4 revealed the great potential of (Fe-bpydc)-catalyzed PEF process.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Eletrodos , Compostos Férricos , Oxirredução , Águas Residuárias , Poluentes Químicos da Água/análise
18.
RSC Adv ; 10(9): 5152-5162, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35498322

RESUMO

Carbon monoxide (CO) purification from syngas impurities is a highly energy and cost intensive process. Adsorption separation using metal-organic frameworks (MOFs) is being explored as an alternative technology for CO/nitrogen (N2) and CO/carbon dioxide (CO2) separation. Currently, MOFs' uptake and selectivity levels do not justify displacement of the current commercially available technologies. Herein, we have impregnated a leading MOF candidate for CO purification, i.e. M-MOF-74 (M = Co or Ni), with Cu+ sites. Cu+ allows strong π-complexation from the 3d electrons with CO, potentially enhancing the separation performance. We have optimised the Cu loading procedure and confirmed the presence of the Cu+ sites using X-ray absorption fine structure analysis (XAFS). In situ XAFS and diffuse reflectance infrared Fourier Transform spectroscopy analyses have demonstrated Cu+-CO binding. The dynamic breakthrough measurements showed an improvement in CO/N2 and CO/CO2 separations upon Cu impregnation. This is because Cu sites do not block the MOF metal sites but rather increase the number of sites available for interactions with CO, and decrease the surface area/porosity available for adsorption of the lighter component.

19.
ACS Appl Mater Interfaces ; 11(46): 43337-43343, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31647628

RESUMO

Efficient removal of CO2 from enclosed environments is a significant challenge, particularly in human space flight where strict restrictions on mass and volume are present. To address this issue, this study describes the use of a multimaterial, layer-by-layer, additive manufacturing technique to directly print a structured multifunctional composite for CO2 sorption with embedded, intrinsic, heating capability to facilitate thermal desorption, removing the need for an external heat source from the system. This multifunctional composite is coprinted from an ink formulation based on zeolite 13X, and an electrically conductive sorbent ink formulation, which includes metal particles blended with the zeolite. The composites are characterized using analytical and imaging tools and then tested for CO2 adsorption/desorption. The resistivity of the conductive sorbent is <2 mΩ m, providing a temperature increase up to 200 °C under 7 V applied bias, which is sufficient to trigger CO2 desorption. The CO2 adsorption capability of the conductive zeolite ink appears to be unaffected by the presence of the conductive particles, meaning a large fraction of the total mass of the structured composite device is functional.

20.
Front Chem ; 7: 160, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972326

RESUMO

Porous boron nitride (BN) is structurally analogous to activated carbon. This material is gaining increasing attention for its potential in a range of adsorption and chemical separation applications, with a number of recent proof-of-concept studies on the removal of organics from water. Today though, the properties of porous BN-i.e., surface area, pore network, chemistry-that dictate adsorption of specific organics remain vastly unknown. Yet, they will need to be optimized to realize the full potential of the material in the envisioned applications. Here, a selection of porous BN materials with varied pore structures and chemistries were studied for the adsorption of different organic molecules, either directly, through vapor sorption analyses or as part of a water/organic mixture in the liquid phase. These separations are relevant to the industrial and environmental sectors and are envisioned to take advantage of the hydrophobic character of the BN sheets. The materials were tested and regenerated and their physical and chemical features were characterized before and after testing. This study allowed identifying the adsorption mechanisms, assessing the performance of porous BN compared to benchmarks in the field and outlining ways to improve the adsorption performance further.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA