Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Insects ; 13(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36555055

RESUMO

Our search for a suitable biological agent to control the tomato russet mite (TRM), Aculops lycopersici, was initiated in 2013. Neoseiulus californicus, Amblyseius andersoni, and Neoseiulus fallacis showed a promising pest reduction potential in a curative control strategy. Although these beneficials had a low survival on tomato and were not able to eradicate the pest, plants did not present typical TRM damage. However, their inability to establish in the tomato crop means that their commercial use would require repeated introductions, making their use too expensive for growers. Other predatory mites in the survey, such as the iolinids Homeopronematus anconai and Pronematus ubiquitus, showed the potential for a preventative strategy as they can establish and reach high densities on tomato with weekly or biweekly provision of Typha angustifolia pollen as a food source. When the tomato crop was adequately colonized by either iolinid, the development of TRM and any damage symptoms could be successfully prevented. The potential of iolinid predatory mites for biological control of eriophyids is discussed.

2.
Chemosphere ; 273: 128518, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33092828

RESUMO

Risk assessment studies addressing effects of agrochemicals on bumblebees frequently use microcolonies. These are queenless colonies consisting of workers only in which typically one worker will lay unfertilized male-destined eggs. In the first tier of risk assessment for bees, short-term laboratory experiments (e.g. microcolonies) are used, the results of which will determine whether higher tier (semi-)field experiments are needed. To evaluate the suitability of microcolonies for risk assessment, a direct comparison between different assessment methods for the neonicotinoid pesticides acetamiprid and thiacloprid was made: microcolonies and queenright colonies under short-term laboratory conditions, queenright colonies under long-term laboratory conditions, and queenright colonies under field conditions. Here, we demonstrate that results from microcolonies contradict results from queenright colonies. While thiacloprid negatively impacted gyne production in queenright colonies, it had a positive effect on microcolony size. By contrast, thiacloprid had no significant effect on fitness parameters of queenright colonies under short-term laboratory conditions when mostly workers are produced. These results thus highlight both the need for long term assessments, allowing evaluation of gyne production, and the risk of reaching erroneous conclusions when using microcolonies. The negative effect of thiacloprid on colony fitness was confirmed under field conditions, where thiacloprid affected the production of reproductives, colony weight gain, worker weight, and foraging behaviour. For acetamiprid, a negative trend on colony fitness could only be shown in a field setup. Therefore, field-realistic setups, which allow colonies to forage freely, are most appropriate to assess sublethal effects of pesticides affecting behaviour and learning.


Assuntos
Inseticidas , Praguicidas , Animais , Abelhas , Inseticidas/toxicidade , Laboratórios , Masculino , Neonicotinoides/toxicidade , Praguicidas/toxicidade , Reprodução , Medição de Risco
3.
Lion; s.n; 1908. 50 p.
Não convencional em Francês | Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1239829
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA