Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(27): e2403777121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38916998

RESUMO

Spinal cord dorsal horn inhibition is critical to the processing of sensory inputs, and its impairment leads to mechanical allodynia. How this decreased inhibition occurs and whether its restoration alleviates allodynic pain are poorly understood. Here, we show that a critical step in the loss of inhibitory tone is the change in the firing pattern of inhibitory parvalbumin (PV)-expressing neurons (PVNs). Our results show that PV, a calcium-binding protein, controls the firing activity of PVNs by enabling them to sustain high-frequency tonic firing patterns. Upon nerve injury, PVNs transition to adaptive firing and decrease their PV expression. Interestingly, decreased PV is necessary and sufficient for the development of mechanical allodynia and the transition of PVNs to adaptive firing. This transition of the firing pattern is due to the recruitment of calcium-activated potassium (SK) channels, and blocking them during chronic pain restores normal tonic firing and alleviates chronic pain. Our findings indicate that PV is essential for controlling the firing pattern of PVNs and for preventing allodynia. Developing approaches to manipulate these mechanisms may lead to different strategies for chronic pain relief.


Assuntos
Dor Crônica , Parvalbuminas , Parvalbuminas/metabolismo , Animais , Dor Crônica/metabolismo , Dor Crônica/fisiopatologia , Camundongos , Neurônios/metabolismo , Neurônios/fisiologia , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Potenciais de Ação/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
2.
Front Nutr ; 11: 1328386, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385013

RESUMO

Background: Obesity has become a significant health concern among young adults aged 18-35 years. Addressing this issue is crucial, and exploring psychological treatments and perspectives specifically for this population is essential. Methods: This literature review examines psychological treatments for obesity in young adults over the past decade. It focuses on interventions and discussions particularly relevant to this age group. Discussion: Research on obesity often overlooks young adults, with most interventions primarily focusing on weight loss and neglecting emotional aspects. Cognitive-behavioral approaches are commonly used for self-regulation and motivation, but psychodynamic perspectives remain underutilized. While group-based methods lack a detailed analysis of benefits, hybrid approaches demonstrate higher engagement compared to technology-only interventions. There is a notable gap in tailoring obesity interventions to meet the unique needs of young adults during this transitional life phase. It's imperative to shift the focus from merely weight loss to a broader consideration of psychological, emotional, and unconscious factors. Integrating group modalities with psychodynamic approaches might offer additional benefits. Conclusion: This review highlights the need for further research into the psychological well-being of young adults with obesity. A more comprehensive approach is required to address their distinct needs and psychological factors.

3.
Acta Neuropsychiatr ; : 1-5, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38200701

RESUMO

OBJECTIVES: The link between cannabis use and psychotic symptoms or disorders is well known. However, the relation between cannabis withdrawal and psychotic symptoms is less studied. METHODS: To our knowledge, this is the first publication of an observational systematic report of cannabis-induced psychotic disorder with onset during withdrawal. Here, we review patients presenting to a major emergency room in Montreal between January 2020 and September 2023 in a context of psychotic symptoms following cannabis cessation. RESULTS: In total, seven male and one female patients presented at the peak of cannabis withdrawal with acute psychotic symptoms, representing less than 1% of all emergency service admissions. CONCLUSIONS: We discuss current knowledge regarding the endocannabinoid system and dopamine homeostasis to formulate hypotheses regarding these observations.

4.
Nat Commun ; 14(1): 1066, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828816

RESUMO

The hypothalamic neuropeptide oxytocin (OT) exerts prominent analgesic effects via central and peripheral action. However, the precise analgesic pathways recruited by OT are largely elusive. Here we discovered a subset of OT neurons whose projections preferentially terminate on OT receptor (OTR)-expressing neurons in the ventrolateral periaqueductal gray (vlPAG). Using a newly generated line of transgenic rats (OTR-IRES-Cre), we determined that most of the vlPAG OTR expressing cells targeted by OT projections are GABAergic. Ex vivo stimulation of parvocellular OT axons in the vlPAG induced local OT release, as measured with OT sensor GRAB. In vivo, optogenetically-evoked axonal OT release in the vlPAG of as well as chemogenetic activation of OTR vlPAG neurons resulted in a long-lasting increase of vlPAG neuronal activity. This lead to an indirect suppression of sensory neuron activity in the spinal cord and strong analgesia in both female and male rats. Altogether, we describe an OT-vlPAG-spinal cord circuit that is critical for analgesia in both inflammatory and neuropathic pain models.


Assuntos
Neuralgia , Ocitocina , Ratos , Masculino , Feminino , Animais , Ocitocina/metabolismo , Substância Cinzenta Periaquedutal/fisiologia , Neurônios/metabolismo , Analgésicos/farmacologia , Neuralgia/metabolismo
5.
Front Mol Neurosci ; 15: 945450, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966017

RESUMO

The activation of the transient receptor potential (TRP) channels expressed by sensory neurons is essential to the transduction of thermal and mechanical sensory information. In the setting of chronic inflammatory conditions, the activation of the melastatin family member 8 (TRPM8), the TRP vanilloid 1 (TRPV1), and the TRP ankyrin 1 (TRPA1) is correlated with pain hypersensitivity reactions. Monoterpenes, among which pulegone and menthol, a major class of phytocompounds present in essential oils of medicinal plants, are known modulators of those TRP channels activity. In the present review, we correlate the monoterpene content of plants with their historical therapeutic properties. We then describe how monoterpenes exert their anti-inflammatory and antihyperalgesia effects through modulation of TRP channels activity. Finally, we discuss the importance and the potential of characterizing new plant extracts and reassessing studied plant extracts for the development of ethnopharmacology-based innovative treatments for chronic pain. This review suggests that monoterpene solutions, based on composition from traditional healing herbs, offer an interesting avenue for the development of new phytotherapeutic treatments to alleviate chronic inflammatory pain conditions.

6.
Front Pharmacol ; 12: 753873, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34916937

RESUMO

Context: Menthol, the main monoterpene found in Mentha piperita L. (M. piperita) is known to modulate nociceptive threshold and is present in different curative preparations that reduce sensory hypersensitivities in pain conditions. While for pulegone, a menthol-like monoterpene, only a limited number of studies focus on its putative analgesic effects, pulegone is the most abundant monoterpene present in Calamintha nepeta (L.) Savi (C. nepeta), a plant of the Lamiaceae family used in traditional medicine to alleviate rheumatic disorders, which counts amongst chronic inflammatory diseases. Objectives: Here, we analyzed the monoterpenes composition of C. nepeta and M. piperita. We then compared the putative anti-hyperalgesic effects of the main monoterpenes found, menthol and pulegone, in acute inflammatory pain conditions. Methods: C. nepeta and M. piperita extracts were obtained through pressurized liquid extraction and analyzed by gas chromatography-mass spectrometry. The in vitro anti-inflammatory activity of menthol or pulegone was evaluated by measuring the secretion of the tumour necrosis factor alpha (TNF α) from LPS-stimulated THP-1 cells. The in vivo anti-hyperalgesic effects of menthol and pulegone were tested on a rat inflammatory pain model. Results: Pulegone and menthol are the most abundant monoterpene found in C. nepeta (49.41%) and M. piperita (42.85%) extracts, respectively. In vitro, both pulegone and menthol act as strong anti-inflammatory molecules, with EC50 values of 1.2 ± 0.2 and 1.5 ± 0.1 mM, respectively, and exert cytotoxicity with EC50 values of 6.6 ± 0.3 and 3.5 ± 0.2 mM, respectively. In vivo, 100 mg/kg pulegone exerts a transient anti-hyperalgesic effect on both mechanical (pulegone: 274.25 ± 68.89 g, n = 8; vehicle: 160.88 ± 35.17 g, n = 8, p < 0.0001), thermal heat (pulegone: 4.09 ± 0.62 s, n = 8; vehicle: 2.25 ± 0.34 s, n = 8, p < 0.0001), and cold (pulegone: 2.25 ± 1.28 score, n = 8; vehicle: 4.75 ± 1.04 score, n = 8, p = 0.0003). In a similar way, 100 mg/kg menthol exerts a transient anti-hyperalgesic effect on both mechanical (mechanical: menthol: 281.63 ± 45.52 g, n = 8; vehicle: 166.25 ± 35.4 g, n = 8, p < 0.0001) and thermal heat (menthol: 3.65 ± 0.88 s, n = 8; vehicle: 2.19 ± 0.26 s, n = 8, <0.0001). Conclusion: Here, we show that both pulegone and menthol are anti-inflammatory and anti-hyperalgesic monoterpenes. These results might open the path towards new compound mixes to alleviate the pain sensation.

7.
Plant Physiol ; 187(3): 1704-1712, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34734277

RESUMO

Mechanoperception, the ability to perceive and respond to mechanical stimuli, is a common and fundamental property of all forms of life. Vascular plants such as Mimosa pudica use this function to protect themselves against herbivory. The mechanical stimulus caused by a landing insect triggers a rapid closing of the leaflets that drives the potential pest away. While this thigmonastic movement is caused by ion fluxes accompanied by a rapid change of volume in the pulvini, the mechanism responsible for the detection of the mechanical stimulus remains poorly understood. Here, we examined the role of mechanosensitive ion channels in the first step of this evolutionarily conserved defense mechanism: the mechanically evoked closing of the leaflet. Our results demonstrate that the key site of mechanosensation in the Mimosa leaflets is the pulvinule, which expresses a stretch-activated chloride-permeable mechanosensitive ion channel. Blocking these channels partially prevents the closure of the leaflets following mechanical stimulation. These results demonstrate a direct relation between the activity of mechanosensitive ion channels and a central defense mechanism of M. pudica.


Assuntos
Canais Iônicos/fisiologia , Mimosa/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/fisiologia , Mecanotransdução Celular , Pulvínulo/fisiologia
8.
Pain ; 161(11): 2619-2628, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32569089

RESUMO

Children diagnosed with Christianson syndrome (CS), a rare X-linked neurodevelopmental disorder characterized by intellectual disability, epilepsy, ataxia, and mutism, also suffer from hyposensitivity to pain. This places them at risk of sustaining serious injuries that often go unattended. Christianson syndrome is caused by mutations in the alkali cation/proton exchanger SLC9A6/NHE6 that regulates recycling endosomal pH homeostasis and trafficking. Yet, it remains unclear how defects in this transporter lead to altered somatosensory functions. In this study, we validated a Nhe6 knockout (KO) mouse as a model of CS and used it to identify the cellular mechanisms underlying the elevated pain tolerance observed in CS patients. Within the central nervous system, NHE6 immunolabelling is detected in a small percentage of cortical neurons involved in pain processing, including those within the primary somatosensory and the anterior cingulate cortices as well as the periaqueductal gray. Interestingly, it is expressed in a larger percentage of nociceptors. Behaviourally, Nhe6 KO mice have decreased nocifensive responses to acute noxious thermal, mechanical, and chemical (ie, capsaicin) stimuli. The reduced capsaicin sensitivity in the KO mice correlates with a decreased expression of the transient receptor potential channel TRPV1 at the plasma membrane and capsaicin-induced Ca influx in primary cultures of nociceptors. These data indicate that NHE6 is a significant determinant of nociceptor function and pain behaviours, vital sensory processes that are impaired in CS.


Assuntos
Ataxia , Epilepsia , Doenças Genéticas Ligadas ao Cromossomo X , Deficiência Intelectual , Microcefalia , Transtornos da Motilidade Ocular , Animais , Capsaicina , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Nociceptividade , Nociceptores , Trocadores de Sódio-Hidrogênio , Canais de Cátion TRPV
9.
Cell ; 180(5): 956-967.e17, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32084332

RESUMO

Mechanotransduction, the conversion of mechanical stimuli into electrical signals, is a fundamental process underlying essential physiological functions such as touch and pain sensing, hearing, and proprioception. Although the mechanisms for some of these functions have been identified, the molecules essential to the sense of pain have remained elusive. Here we report identification of TACAN (Tmem120A), an ion channel involved in sensing mechanical pain. TACAN is expressed in a subset of nociceptors, and its heterologous expression increases mechanically evoked currents in cell lines. Purification and reconstitution of TACAN in synthetic lipids generates a functional ion channel. Finally, a nociceptor-specific inducible knockout of TACAN decreases the mechanosensitivity of nociceptors and reduces behavioral responses to painful mechanical stimuli but not to thermal or touch stimuli. We propose that TACAN is an ion channel that contributes to sensing mechanical pain.


Assuntos
Canais Iônicos/fisiologia , Mecanotransdução Celular/genética , Nociceptores/metabolismo , Dor/genética , Tato/genética , Animais , Regulação da Expressão Gênica/genética , Humanos , Canais Iônicos/genética , Lipídeos/genética , Camundongos , Camundongos Knockout , Dor/fisiopatologia , Técnicas de Patch-Clamp , Estresse Mecânico , Tato/fisiologia
10.
Anal Bioanal Chem ; 412(4): 933-948, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31927601

RESUMO

Deep eutectic solvents (DESs) were investigated as extracting solvent for headspace single-drop microextraction (HS-SDME). The extraction efficiency of 10 DESs mainly composed of tetrabutylammonium bromide (N4444Br) and long-chain alcohols was evaluated for the extraction of terpenes from six spices (cinnamon, cumin, fennel, clove, thyme, and nutmeg). The DES composed of N4444Br and dodecanol at a molar ratio of 1:2 showed the highest extraction efficiency and was selected to conduct the extractions of terpenes in the rest of the study. HS-SDME was optimized by design of experiments. Only two parameters from the four studied showed a significant influence on the efficiency of the method: the extraction time and the extraction temperature. The optimal extraction conditions were determined by response surface methodology. All extracts were analyzed by gas chromatography coupled to mass spectrometry (GC-MS). More than 40 terpenes were extracted and identified in nutmeg, the richest extract in terpenes in this study. Quantitative analysis based on 29 standards was conducted for each extract. Good linearity was obtained for all standards (R2 > 0.99) in the interval of 1 to 500 µg/g. Limits of quantification ranged from 0.47 µg/g (borneol) to 86.40 µg/g (α-farnesene) with more than half of the values under 2 µg/g. HS-SDME is simple, rapid, and cheap compared with conventional extraction methods. The use of DESs makes this extraction method "greener" and it was shown that DESs can be suitable solvents for the extraction of bioactive compounds from plants.


Assuntos
Microextração em Fase Líquida/métodos , Especiarias/análise , Terpenos/análise , Cinnamomum zeylanicum/química , Cuminum/química , Foeniculum/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Myristica/química , Extratos Vegetais/química , Solventes/química , Syzygium/química , Terpenos/isolamento & purificação , Thymus (Planta)/química
11.
12.
Cell Rep ; 28(6): 1429-1438.e4, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390558

RESUMO

The dorsal horn of the spinal cord is the first integration site of somatosensory inputs from the periphery. In the superficial layers of the dorsal horn, nociceptive inputs are processed by a complex network of excitatory and inhibitory interneurons whose function and connectivity remain poorly understood. We examined the role of calretinin-expressing interneurons (CR neurons) in such processing and show that they receive direct inputs from nociceptive fibers and polysynaptic inputs from touch-sensitive Aß fibers. Their activation by chemogenetic or optogenetic stimulation produces mechanical allodynia and nocifensive responses. Furthermore, they monosynaptically engage spinoparabrachial (SPb) neurons in lamina I, suggesting CR neurons modulate one of the major ascending pain pathways of the dorsal horn. In conclusion, we propose a neuronal pathway in which CR neurons are positioned at the junction between nociceptive and innocuous circuits and directly control SPb neurons in lamina I.


Assuntos
Calbindina 2/fisiologia , Interneurônios/fisiologia , Células do Corno Posterior/fisiologia , Corno Dorsal da Medula Espinal/citologia , Animais , Capsaicina , Hiperalgesia , Masculino , Memória , Camundongos Endogâmicos C57BL , Vias Neurais , Nociceptividade/fisiologia , Optogenética , Núcleos Parabraquiais/citologia , Recrutamento Neurofisiológico
13.
Neuron ; 103(1): 5-7, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31271755

RESUMO

In this issue of Neuron, Pagani et al. (2019) find that itch signaling occurs only when GRP neurons fire action potentials in bursts. This enables GRP release and the activation of GRPR neurons, which help carry the itch signal to the brain.


Assuntos
Prurido , Medula Espinal , Potenciais de Ação , Peptídeo Liberador de Gastrina , Humanos , Neurônios
14.
Pain ; 159(11): 2255-2266, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29965829

RESUMO

The lionfish (Pterois volitans) is a venomous invasive species found in the Caribbean and Northwestern Atlantic. It poses a growing health problem because of the increase in frequency of painful stings, for which no treatment or antidote exists, and the long-term disability caused by the pain. Understanding the venom's algogenic properties can help identify better treatment for these envenomations. In this study, we provide the first characterization of the pain and inflammation caused by lionfish venom and examine the mechanisms through which it causes pain using a combination of in vivo and in vitro approaches including behavioral, physiological, calcium imaging, and electrophysiological testing. Intraplantar injections of the venom produce a significant increase in pain behavior, as well as a marked increase in mechanical sensitivity for up to 24 hours after injection. The algogenic substance(s) are heat-labile peptides that cause neurogenic inflammation at the site of injection and induction of Fos and microglia activation in the superficial layers of the dorsal horn. Finally, calcium imaging and electrophysiology experiments show that the venom acts predominantly on nonpeptidergic, TRPV1-negative, nociceptors, a subset of neurons implicated in sensing mechanical pain. These data provide the first characterization of the pain and inflammation caused by lionfish venom, as well as the first insight into its possible cellular mechanism of action.


Assuntos
Venenos de Peixe/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Medição da Dor/efeitos dos fármacos , Dor/induzido quimicamente , Dor/metabolismo , Canais de Cátion TRPV/metabolismo , Acrilamidas/uso terapêutico , Análise de Variância , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Capsaicina/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Gânglios Espinais/citologia , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Hiperalgesia/fisiopatologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Inflamação Neurogênica/induzido quimicamente , Proteínas Oncogênicas v-fos/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/genética , Fatores de Tempo , Tato
15.
Cell Rep ; 13(6): 1246-1257, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26527000

RESUMO

Neuropathic pain is a chronic debilitating disease that results from nerve damage, persists long after the injury has subsided, and is characterized by spontaneous pain and mechanical hypersensitivity. Although loss of inhibitory tone in the dorsal horn of the spinal cord is a major contributor to neuropathic pain, the molecular and cellular mechanisms underlying this disinhibition are unclear. Here, we combined pharmacogenetic activation and selective ablation approaches in mice to define the contribution of spinal cord parvalbumin (PV)-expressing inhibitory interneurons in naive and neuropathic pain conditions. Ablating PV neurons in naive mice produce neuropathic pain-like mechanical allodynia via disinhibition of PKCγ excitatory interneurons. Conversely, activating PV neurons in nerve-injured mice alleviates mechanical hypersensitivity. These findings indicate that PV interneurons are modality-specific filters that gate mechanical but not thermal inputs to the dorsal horn and that increasing PV interneuron activity can ameliorate the mechanical hypersensitivity that develops following nerve injury.


Assuntos
Hiperalgesia/fisiopatologia , Interneurônios/fisiologia , Neuralgia/fisiopatologia , Corno Dorsal da Medula Espinal/fisiologia , Animais , Células Cultivadas , Hiperalgesia/patologia , Interneurônios/metabolismo , Interneurônios/patologia , Camundongos , Neuralgia/patologia , Parvalbuminas/genética , Parvalbuminas/metabolismo , Proteína Quinase C/metabolismo , Corno Dorsal da Medula Espinal/patologia , Corno Dorsal da Medula Espinal/fisiopatologia , Sinapses/metabolismo , Sinapses/fisiologia , Tato
16.
J Neurophysiol ; 114(2): 1008-21, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26063780

RESUMO

Gonadotropin-releasing hormone (GnRH) controls mammalian reproduction via the hypothalamic-pituitary-gonadal (hpg) axis, acting on gonadotrope cells in the pituitary gland that express the GnRH receptor (GnRHR). Cells expressing the GnRHR have also been identified in the brain. However, the mechanism by which GnRH acts on these potential target cells remains poorly understood due to the difficulty of visualizing and identifying living GnRHR neurons in the central nervous system. We have developed a mouse strain in which GnRHR neurons express a fluorescent marker, enabling the reliable identification of these cells independent of the hormonal status of the animal. In this study, we analyze the GnRHR neurons of the periventricular hypothalamic nucleus in acute brain slices prepared from adult female mice. Strikingly, we find that the action potential firing pattern of these neurons alternates in synchrony with the estrous cycle, with pronounced burst firing during the preovulatory period. We demonstrate that GnRH stimulation is sufficient to trigger the conversion from tonic to burst firing in GnRHR neurons. Furthermore, we show that this switch in the firing pattern is reversed by a potent GnRHR antagonist. These data suggest that endogenous GnRH acts on GnRHR neurons and triggers burst firing in these cells during late proestrus and estrus. Our data have important clinical implications in that they indicate a novel mode of action for GnRHR agonists and antagonists in neurons of the central nervous system that are not part of the classical hpg axis.


Assuntos
Potenciais de Ação/fisiologia , Ciclo Estral/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Capilares/ultraestrutura , Ciclo Estral/efeitos dos fármacos , Feminino , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Antagonistas de Hormônios/farmacologia , Hipotálamo/irrigação sanguínea , Hipotálamo/efeitos dos fármacos , Hipotálamo/ultraestrutura , Imuno-Histoquímica , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neurônios/ultraestrutura , Receptores LHRH/antagonistas & inibidores , Receptores LHRH/metabolismo , Técnicas de Cultura de Tecidos
17.
Eur J Neurosci ; 40(8): 3189-201, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25104469

RESUMO

Probenecid, an agonist of transient receptor vanilloid (TRPV) type 2, was used to evaluate the effects of TRPV2 activation on excitatory and inhibitory synaptic transmission in the dorsal horn (DH) of the rat spinal cord and on nociceptive reflexes induced by thermal heat and mechanical stimuli. The effects of probenecid were compared with those of capsaicin, a TRPV1 agonist. Calcium imaging experiments on rat dorsal root ganglion (DRG) and DH cultures indicated that functional TRPV2 and TRPV1 were expressed by essentially non-overlapping subpopulations of DRG neurons, but were absent from DH neurons and DH and DRG glial cells. Pretreatment of DRG cultures with small interfering RNAs against TRPV2 suppressed the responses to probenecid. Patch-clamp recordings from spinal cord slices showed that probenecid and capsaicin increased the frequencies of spontaneous excitatory postsynaptic currents (sEPSCs) and spontaneous inhibitory postsynaptic currents in a subset of laminae III-V neurons. In contrast to capsaicin, probenecid failed to stimulate synaptic transmission in lamina II. Intrathecal or intraplantar injections of probenecid induced mechanical hyperalgesia/allodynia without affecting nociceptive heat responses. Capsaicin induced both mechanical hyperalgesia/allodynia and heat hyperalgesia. Activation of TRPV1 or TRPV2 in distinct sets of primary afferents increased the sEPSC frequencies in a largely common population of DH neurons in laminae III-V, and might underlie the development of mechanical hypersensitivity following probenecid or capsaicin treatment. However, only TRPV1-expressing afferents facilitated excitatory and/or inhibitory transmission in a subpopulation of lamina II neurons, and this phenomenon might be correlated with the induction of thermal heat hyperalgesia.


Assuntos
Neurônios/fisiologia , Corno Dorsal da Medula Espinal/fisiologia , Transmissão Sináptica , Canais de Cátion TRPV/fisiologia , Vias Aferentes , Animais , Capsaicina/farmacologia , Células Cultivadas , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Hiperalgesia/induzido quimicamente , Masculino , Neurônios/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Probenecid/farmacologia , Ratos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Canais de Cátion TRPV/agonistas
18.
Neurobiol Dis ; 60: 39-50, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23978467

RESUMO

Neuropathic pain is pain arising as a direct consequence of a lesion or disease affecting the somatosensory system. It is usually chronic and challenging to treat. Some antidepressants are first-line pharmacological treatments for neuropathic pain. The noradrenaline that is recruited by the action of the antidepressants on reuptake transporters has been proposed to act through ß2-adrenoceptors (ß2-ARs) to lead to the observed therapeutic effect. However, the complex downstream mechanism mediating this action remained to be identified. In this study, we demonstrate in a mouse model of neuropathic pain that an antidepressant's effect on neuropathic allodynia involves the peripheral nervous system and the inhibition of cytokine tumor necrosis factor α (TNFα) production. The antiallodynic action of nortriptyline is indeed lost after peripheral sympathectomy, but not after lesion of central descending noradrenergic pathways. More particularly, we report that antidepressant-recruited noradrenaline acts, within dorsal root ganglia, on ß2-ARs expressed by non-neuronal satellite cells. This stimulation of ß2-ARs decreases the neuropathy-induced production of membrane-bound TNFα, resulting in relief of neuropathic allodynia. This indirect anti-TNFα action was observed with the tricyclic antidepressant nortriptyline, the selective serotonin and noradrenaline reuptake inhibitor venlafaxine and the ß2-AR agonist terbutaline. Our data revealed an original therapeutic mechanism that may open novel research avenues for the management of painful peripheral neuropathies.


Assuntos
Antidepressivos Tricíclicos/farmacologia , Gânglios Espinais/metabolismo , Neuralgia/tratamento farmacológico , Receptores Adrenérgicos beta 2/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anticorpos Monoclonais/farmacologia , Antidepressivos Tricíclicos/uso terapêutico , Etanercepte , Gânglios Espinais/patologia , Imunoglobulina G/farmacologia , Infliximab , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/metabolismo , Norepinefrina/metabolismo , Nortriptilina/farmacologia , Medição da Dor , Receptores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/metabolismo
19.
Eur J Neurosci ; 36(11): 3500-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22967006

RESUMO

In acute rat spinal cord slices, the application of capsaicin (5 µm, 90 s), an agonist of transient receptor potential vanilloid 1 receptors expressed by a subset of nociceptors that project to laminae I-II of the spinal cord dorsal horn, induced an increase in the frequency of spontaneous excitatory and spontaneous inhibitory postsynaptic currents in about half of the neurons in laminae II, III-IV and V. In the presence of tetrodotoxin, which blocks action potential generation and polysynaptic transmission, capsaicin increased the frequency of miniature excitatory postsynaptic currents in only 30% of lamina II neurons and had no effect on the frequency of miniature excitatory postsynaptic currents in laminae III-V or on the frequency of miniature inhibitory postsynaptic currents in laminae II-V. When the communication between lamina V and more superficial laminae was interrupted by performing a mechanical section between laminae IV and V, capsaicin induced an increase in spontaneous excitatory postsynaptic current frequency in laminae II-IV and an increase in spontaneous inhibitory postsynaptic current frequency in lamina II that were similar to those observed in intact slices. However, in laminae III-IV of transected slices, the increase in spontaneous inhibitory postsynaptic current frequency was virtually abolished. Our results indicate that nociceptive information conveyed by transient receptor potential vanilloid 1-expressing nociceptors is transmitted from lamina II to deeper laminae essentially by an excitatory pathway and that deep laminae exert a 'feedback' control over neurons in laminae III-IV by increasing inhibitory synaptic transmission in these laminae. Moreover, we provide evidence that laminae III-IV might play an important role in the processing of nociceptive information in the dorsal horn.


Assuntos
Nociceptividade/fisiologia , Nociceptores/fisiologia , Células do Corno Posterior/fisiologia , Potenciais de Ação , Animais , Capsaicina/farmacologia , Potenciais Pós-Sinápticos Excitadores , Retroalimentação Fisiológica , Potenciais Pós-Sinápticos Inibidores , Masculino , Potenciais Pós-Sinápticos em Miniatura , Nociceptividade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fármacos do Sistema Sensorial/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Tetrodotoxina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA