Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
J Clin Invest ; 134(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357926

RESUMO

Chronic low-grade inflammation is increasingly recognized as a subtle yet potent risk factor for a multitude of age-related disorders, including respiratory diseases, cardiovascular conditions, metabolic syndromes, autoimmunity, and cancer. In this issue of the JCI, Mebratu, Jones, and colleagues shed new light on the mechanisms that promote low-grade airway inflammation and how this contributes to the development of chronic obstructive pulmonary disease (COPD). Their finding that Bik deficiency leads to spontaneous emphysema in female mice, but not in males, marks a notable advancement in our understanding of how inflammatory processes can diverge based on biological sex. This finding is of clinical relevance, given the vulnerability of women to developing COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Masculino , Feminino , Animais , Camundongos , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Sistema Respiratório , Inflamação/genética , Fatores de Risco , Proteínas Mitocondriais , Proteínas Reguladoras de Apoptose
2.
Ann Am Thorac Soc ; 21(1): 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37903340

RESUMO

"Translational medicine" has been a buzzword for over two decades. The concept was intended to be lofty, to reflect a new "bench-to-bedside" approach to basic and clinical research that would bridge fields, close gaps, accelerate innovation, and shorten the time and effort it takes to bring novel technologies from basic discovery to clinical application. Has this approach been successful and lived up to its promise? Despite incredible scientific advances and innovations developed within academia, successful clinical translation into real-world solutions has been difficult. This has been particularly challenging within the pulmonary field, because there have been fewer U.S. Food and Drug Administration-approved drugs and higher failure rates for pulmonary therapies than with other common disease areas. The American Thoracic Society convened a working group with the goal of identifying major challenges related to the commercialization of technologies within the pulmonary space and opportunities to enhance this process. A survey was developed and administered to 164 participants within the pulmonary arena. This report provides a summary of these survey results. Importantly, this report identifies a number of poorly recognized challenges that exist in pulmonary academic settings, which likely contribute to diminished efficiency of commercialization efforts, ultimately hindering the rate of successful clinical translation. Because many innovations are initially developed in academic settings, this is a global public health issue that impacts the entire American Thoracic Society community. This report also summarizes key resources and opportunities and provides recommendations to enhance successful commercialization of pulmonary technologies.


Assuntos
Tecnologia Biomédica , Pneumologia , Ciência Translacional Biomédica , Humanos , Estados Unidos
3.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L711-L725, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37814796

RESUMO

Chronic obstructive pulmonary disease (COPD) is characterized by nonresolving inflammation fueled by breach in the endothelial barrier and leukocyte recruitment into the airspaces. Among the ligand-receptor axes that control leukocyte recruitment, the full-length fractalkine ligand (CX3CL1)-receptor (CX3CR1) ensures homeostatic endothelial-leukocyte interactions. Cigarette smoke (CS) exposure and respiratory pathogens increase expression of endothelial sheddases, such as a-disintegrin-and-metalloproteinase-domain 17 (ADAM17, TACE), inhibited by the anti-protease α-1 antitrypsin (AAT). In the systemic endothelium, TACE cleaves CX3CL1 to release soluble CX3CL1 (sCX3CL1). During CS exposure, it is not known whether AAT inhibits sCX3CL1 shedding and CX3CR1+ leukocyte transendothelial migration across lung microvasculature. We investigated the mechanism of sCX3CL1 shedding, its role in endothelial-monocyte interactions, and AAT effect on these interactions during acute inflammation. We used two, CS and lipopolysaccharide (LPS) models of acute inflammation in transgenic Cx3cr1gfp/gfp mice and primary human endothelial cells and monocytes to study sCX3CL1-mediated CX3CR1+ monocyte adhesion and migration. We measured sCX3CL1 levels in plasma and bronchoalveolar lavage (BALF) of individuals with COPD. Both sCX3CL1 shedding and CX3CR1+ monocytes transendothelial migration were triggered by LPS and CS exposure in mice, and were significantly attenuated by AAT. The inhibition of monocyte-endothelial adhesion and migration by AAT was TACE-dependent. Compared with healthy controls, sCX3CL1 levels were increased in plasma and BALF of individuals with COPD, and were associated with clinical parameters of emphysema. Our results indicate that inhibition of sCX3CL1 as well as AAT augmentation may be effective approaches to decrease excessive monocyte lung recruitment during acute and chronic inflammatory states.NEW & NOTEWORTHY Our novel findings that AAT and other inhibitors of TACE, the sheddase that controls full-length fractalkine (CX3CL1) endothelial expression, may provide fine-tuning of the CX3CL1-CX3CR1 axis specifically involved in endothelial-monocyte cross talk and leukocyte recruitment to the alveolar space, suggests that AAT and inhibitors of sCX3CL1 signaling may be harnessed to reduce lung inflammation.


Assuntos
Quimiocina CX3CL1 , Enfisema Pulmonar , Animais , Humanos , Camundongos , alfa 1-Antitripsina/farmacologia , Comunicação Celular , Receptor 1 de Quimiocina CX3C/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Inflamação/metabolismo , Ligantes , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Monócitos , Enfisema Pulmonar/metabolismo
4.
Am J Respir Cell Mol Biol ; 69(5): 500-507, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37584669

RESUMO

The onset of chronic obstructive pulmonary disease (COPD) is heterogeneous, and current approaches to define distinct disease phenotypes are lacking. In addition to clinical methodologies, subtyping COPD has also been challenged by the reliance on human lung samples from late-stage diseases. Different COPD phenotypes may be initiated from the susceptibility of different cell types to cigarette smoke, environmental pollution, and infections at early stages that ultimately converge at later stages in airway remodeling and destruction of the alveoli when the disease is diagnosed. This perspective provides discussion points on how studies to date define different cell types of the lung that can initiate COPD pathogenesis, focusing on the susceptibility of macrophages, T and B cells, mast cells, dendritic cells, endothelial cells, and airway epithelial cells. Additional cell types, including fibroblasts, smooth muscle cells, neuronal cells, and other rare cell types not covered here, may also play a role in orchestrating COPD. Here, we discuss current knowledge gaps, such as which cell types drive distinct disease phenotypes and/or stages of the disease and which cells are primarily affected by the genetic variants identified by whole genome-wide association studies. Applying new technologies that interrogate the functional role of a specific cell type or a combination of cell types as well as single-cell transcriptomics and proteomic approaches are creating new opportunities to understand and clarify the pathophysiology and thereby the clinical heterogeneity of COPD.


Assuntos
Células Endoteliais , Doença Pulmonar Obstrutiva Crônica , Humanos , Células Endoteliais/metabolismo , Estudo de Associação Genômica Ampla , Proteômica , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pulmão/patologia
5.
Proc Natl Acad Sci U S A ; 120(34): e2220269120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579172

RESUMO

The vascular endothelium from individual organs is functionally specialized, and it displays a unique set of accessible molecular targets. These serve as endothelial cell receptors to affinity ligands. To date, all identified vascular receptors have been proteins. Here, we show that an endothelial lung-homing peptide (CGSPGWVRC) interacts with C16-ceramide, a bioactive sphingolipid that mediates several biological functions. Upon binding to cell surfaces, CGSPGWVRC triggers ceramide-rich platform formation, activates acid sphingomyelinase and ceramide production, without the associated downstream apoptotic signaling. We also show that the lung selectivity of CGSPGWVRC homing peptide is dependent on ceramide production in vivo. Finally, we demonstrate two potential applications for this lipid vascular targeting system: i) as a bioinorganic hydrogel for pulmonary imaging and ii) as a ligand-directed lung immunization tool against COVID-19. Thus, C16-ceramide is a unique example of a lipid-based receptor system in the lung vascular endothelium targeted in vivo by circulating ligands such as CGSPGWVRC.


Assuntos
COVID-19 , Humanos , Ligantes , COVID-19/metabolismo , Ceramidas/metabolismo , Pulmão/metabolismo , Endotélio Vascular/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas de Transporte/metabolismo , Esfingomielina Fosfodiesterase/metabolismo
7.
Innate Immun ; 29(5): 61-70, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37306239

RESUMO

Vaping is an increasing health threat in the US and worldwide. The damaging impact of vaping on the human distal lung has been highlighted by the recent epidemic of electronic cigarette or vaping use-associated lung injury (EVALI). The pathogenesis of EVALI remains incompletely understood, due to a paucity of models that recapitulate the structural and functional complexity of the human distal lung and the still poorly defined culprit exposures to vaping products and respiratory viral infections. Our aim was to establish the feasibility of using single cell RNA-sequencing (scRNA-seq) technology in human precision-cut lung slices (PCLS) as a more physiologically relevant model to better understand how vaping regulates the antiviral and pro-inflammatory response to influenza A virus infection. Normal healthy donor PCLS were treated with vaping extract and influenza A viruses for scRNA-seq analysis. Vaping extract augmented host antiviral and pro-inflammatory responses in structural cells such as lung epithelial cells and fibroblasts, as well as in immune cells such as macrophages and monocytes. Our findings suggest that human distal lung slice model is useful to study the heterogeneous responses of immune and structural cells under EVALI conditions, such as vaping and respiratory viral infection.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Lesão Pulmonar , Vaping , Viroses , Humanos , Vaping/efeitos adversos , Pulmão , Antivirais , RNA
8.
JCI Insight ; 8(10)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37212278

RESUMO

The pathogenesis of the marked pulmonary microvasculature injury, a distinguishing feature of COVID-19 acute respiratory distress syndrome (COVID-ARDS), remains unclear. Implicated in the pathophysiology of diverse diseases characterized by endothelial damage, including ARDS and ischemic cardiovascular disease, ceramide and in particular palmitoyl ceramide (C16:0-ceramide) may be involved in the microvascular injury in COVID-19. Using deidentified plasma and lung samples from COVID-19 patients, ceramide profiling by mass spectrometry was performed. Compared with healthy individuals, a specific 3-fold C16:0-ceramide elevation in COVID-19 patient plasma was identified. Compared with age-matched controls, autopsied lungs of individuals succumbing to COVID-ARDS displayed a massive 9-fold C16:0-ceramide elevation and exhibited a previously unrecognized microvascular ceramide-staining pattern and markedly enhanced apoptosis. In COVID-19 plasma and lungs, the C16-ceramide/C24-ceramide ratios were increased and reversed, respectively, consistent with increased risk of vascular injury. Indeed, exposure of primary human lung microvascular endothelial cell monolayers to C16:0-ceramide-rich plasma lipid extracts from COVID-19, but not healthy, individuals led to a significant decrease in endothelial barrier function. This effect was phenocopied by spiking healthy plasma lipid extracts with synthetic C16:0-ceramide and was inhibited by treatment with ceramide-neutralizing monoclonal antibody or single-chain variable fragment. These results indicate that C16:0-ceramide may be implicated in the vascular injury associated with COVID-19.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Lesões do Sistema Vascular , Humanos , Ceramidas , Pulmão/irrigação sanguínea
9.
Compr Physiol ; 13(2): 4617-4630, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36994770

RESUMO

EVALI is an acute inflammatory disease in response to lung cell injury induced by electronic cigarettes and vaping devices (EV) frequently containing Vitamin E Acetate or tetrahydrocannabinol additives, in the context of risk factors such as microbial exposure. EVALI resembles a respiratory viral illness that may progress to acute respiratory failure and acute respiratory distress syndrome (ARDS) but can also affect extra pulmonary organs. Manifestations may be severe, leading to death or long-term morbidity and current treatments are largely supportive. While COVID-19 has demanded public and research attention, EVALI continues to affect young individuals and its better understanding via research remains a priority. Although clinical research led to improved recognition of triggers, clinical and pathological manifestations, and natural course of EVALI, important questions remain that require a better understanding of disease pathogenesis. Preclinical models utilizing laboratory animals and cell or tissue culture platforms provide insight into the physiologic and mechanistic consequences of acute and chronic EV exposure, including the characteristics of the respiratory dysfunction and inflammatory response. However, a key limitation in the field is the absence of an established animal model of EVALI. Important areas of research emphasis include identifying triggers and risk factors to understand why only certain vapers develop EVALI, the role of specific lung immune and structural cells in the pathogenesis of EVALI, and the most important molecular mediators and therapeutic targets in EVALI. © 2023 American Physiological Society. Compr Physiol 13:4617-4630, 2023.


Assuntos
COVID-19 , Sistemas Eletrônicos de Liberação de Nicotina , Lesão Pulmonar , Vaping , Estados Unidos , Humanos , Lesão Pulmonar/induzido quimicamente , COVID-19/complicações , Dronabinol/efeitos adversos , Vaping/efeitos adversos
11.
Respir Res ; 23(1): 349, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522710

RESUMO

BACKGROUND: Despite causing increased morbidity and mortality, pulmonary hypertension (PH) in chronic obstructive pulmonary disease (COPD) patients (COPD-PH) lacks treatment, due to incomplete understanding of its pathogenesis. Hypertrophy of pulmonary arterial walls and pruning of the microvasculature with loss of capillary beds are known features of pulmonary vascular remodeling in COPD. The remodeling features of pulmonary medium- and smaller vessels in COPD-PH lungs are less well described and may be linked to maladaptation of endothelial cells to chronic cigarette smoking (CS). MicroRNA-126 (miR126), a master regulator of endothelial cell fate, has divergent functions that are vessel-size specific, supporting the survival of large vessel endothelial cells and inhibiting the proliferation of microvascular endothelial cells. Since CS decreases miR126 in microvascular lung endothelial cells, we set out to characterize the remodeling by pulmonary vascular size in COPD-PH and its relationship with miR126 in COPD and COPD-PH lungs. METHODS: Deidentified lung tissue was obtained from individuals with COPD with and without PH and from non-diseased non-smokers and smokers. Pulmonary artery remodeling was assessed by ⍺-smooth muscle actin (SMA) abundance via immunohistochemistry and analyzed by pulmonary artery size. miR126 and miR126-target abundance were quantified by qPCR. The expression levels of ceramide, ADAM9, and endothelial cell marker CD31 were assessed by immunofluorescence. RESULTS: Pulmonary arteries from COPD and COPD-PH lungs had significantly increased SMA abundance compared to non-COPD lungs, especially in small pulmonary arteries and the lung microvasculature. This was accompanied by significantly fewer endothelial cell markers and increased pro-apoptotic ceramide abundance. miR126 expression was significantly decreased in lungs of COPD individuals. Of the targets tested (SPRED1, VEGF, LAT1, ADAM9), lung miR126 most significantly inversely correlated with ADAM9 expression. Compared to controls, ADAM9 was significantly increased in COPD and COPD-PH lungs, predominantly in small pulmonary arteries and lung microvasculature. CONCLUSION: Both COPD and COPD-PH lungs exhibited significant remodeling of the pulmonary vascular bed of small and microvascular size, suggesting these changes may occur before or independent of the clinical development of PH. Decreased miR126 expression with reciprocal increase in ADAM9 may regulate endothelial cell survival and vascular remodeling in small pulmonary arteries and lung microvasculature in COPD and COPD-PH.


Assuntos
Hipertensão Pulmonar , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Humanos , Hipertensão Pulmonar/patologia , Remodelação Vascular , Células Endoteliais/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Artéria Pulmonar/metabolismo , Pulmão/metabolismo , Ceramidas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Membrana/metabolismo , Proteínas ADAM/metabolismo
12.
Metabolites ; 12(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36355108

RESUMO

Exercise intolerance is a major manifestation of post-acute sequelae of severe acute respiratory syndrome coronavirus infection (PASC, or "long-COVID"). Exercise intolerance in PASC is associated with higher arterial blood lactate accumulation and lower fatty acid oxidation rates during graded exercise tests to volitional exertion, suggesting altered metabolism and mitochondrial dysfunction. It remains unclear whether the profound disturbances in metabolism that have been identified in plasma from patients suffering from acute coronavirus disease 2019 (COVID-19) are also present in PASC. To bridge this gap, individuals with a history of previous acute COVID-19 infection that did not require hospitalization were enrolled at National Jewish Health (Denver, CO, USA) and were grouped into those that developed PASC (n = 29) and those that fully recovered (n = 16). Plasma samples from the two groups were analyzed via mass spectrometry-based untargeted metabolomics and compared against plasma metabolic profiles of healthy control individuals (n = 30). Observational demographic and clinical data were retrospectively abstracted from the medical record. Compared to plasma of healthy controls or individuals who recovered from COVID-19, PASC plasma exhibited significantly higher free- and carnitine-conjugated mono-, poly-, and highly unsaturated fatty acids, accompanied by markedly lower levels of mono-, di- and tricarboxylates (pyruvate, lactate, citrate, succinate, and malate), polyamines (spermine) and taurine. Plasma from individuals who fully recovered from COVID-19 exhibited an intermediary metabolic phenotype, with milder disturbances in fatty acid metabolism and higher levels of spermine and taurine. Of note, depletion of tryptophan-a hallmark of disease severity in COVID-19-is not normalized in PASC patients, despite normalization of kynurenine levels-a tryptophan metabolite that predicts mortality in hospitalized COVID-19 patients. In conclusion, PASC plasma metabolites are indicative of altered fatty acid metabolism and dysfunctional mitochondria-dependent lipid catabolism. These metabolic profiles obtained at rest are consistent with previously reported mitochondrial dysfunction during exercise, and may pave the way for therapeutic intervention focused on restoring mitochondrial fat-burning capacity.

14.
Am J Physiol Lung Cell Mol Physiol ; 323(4): L391-L399, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35943156

RESUMO

The pathogenesis of chronic obstructive pulmonary disease (COPD), a prevalent disease primarily caused by cigarette smoke exposure, is incompletely elucidated. Studies in humans and mice have suggested that hypoxia-inducible factor-1α (HIF-1α) may play a role. Reduced lung levels of HIF-1α are associated with decreased vascular density, whereas increased leukocyte HIF-1α may be responsible for increased inflammation. To elucidate the specific role of leukocyte HIF-1α in COPD, we exposed transgenic mice with conditional deletion or overexpression of HIF-1α in leukocytes to cigarette smoke for 7 mo. Outcomes included pulmonary physiology, aerated lung volumes via microcomputed tomography, lung morphometry and histology, and cardiopulmonary hemodynamics. On aggregate, cigarette smoke increased the aerated lung volume, quasi-static lung compliance, inspiratory capacity of all strains while reducing the total alveolar septal volume. Independent of smoke exposure, mice with leukocyte-specific HIF-1α overexpression had increased quasi-static compliance, inspiratory capacity, and alveolar septal volume compared with mice with leukocyte-specific HIF-1α deletion. However, the overall development of cigarette smoke-induced lung disease did not vary relative to control mice for either of the conditional strains. This suggests that the development of murine cigarette smoke-induced airspace disease occurs independently of leukocyte HIF-1α signaling.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Modelos Animais de Doenças , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Leucócitos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/patologia , Nicotiana/efeitos adversos , Microtomografia por Raio-X
15.
Arch Toxicol ; 96(8): 2319-2328, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35672461

RESUMO

Electronic cigarettes or vaping products have been marketed as a safer alternative to smoking, but very little is known about the health effects in the human lung, particularly in the distal airways, a key site of airway obstruction and destruction in chronic obstructive pulmonary disease that is often exacerbated by viral infections. The aim of this study was to investigate the effects of electronic cigarette vapor (e-vapor) on human distal airway epithelial responses to influenza A virus (IAV) infection. We isolated primary small airway epithelial cells (SAECs) from donor lungs free of lung disease, and cultured them at air-liquid interface (ALI). To measure markers of epithelial injury such as integrity of epithelial barrier structure and function, we selected a regimen of non-toxic, barrier preserving e-vapor exposure of cultured cells to 15 puffs of e-vapor from a commercially available e-cigarette once per day for 3 days, prior to IAV infection. After 72 h of infection, media and cell lysates were collected to measure cytokines involved in inflammatory and antiviral responses. Pre-exposure to e-vapor with IAV infection, compared to IAV infection alone, significantly increased inflammatory and antiviral mediators including IL-8, CXCL10, IFN-beta, and MX1. Our results suggest that e-vapor exposure amplifies human distal airway pro-inflammatory response to IAV infection, independently of the severity of cell injury during viral infection.


Assuntos
Vapor do Cigarro Eletrônico , Sistemas Eletrônicos de Liberação de Nicotina , Vírus da Influenza A , Influenza Humana , Viroses , Antivirais/farmacologia , Células Epiteliais , Epitélio , Humanos , Pulmão
16.
Respir Med ; 197: 106832, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35462298

RESUMO

RATIONALE: SARS-CoV-2 continues to cause a global pandemic and management of COVID-19 in outpatient settings remains challenging. OBJECTIVE: We sought to describe characteristics of patients with chronic respiratory disease (CRD) experiencing symptoms consistent with COVID-19, who were seen in a novel Acute Respiratory Clinic, prior to widely available testing, emergence of variants, COVID-19 vaccination, and post-vaccination (breakthrough) SARS-CoV-2 infections. METHODS: Retrospective electronic medical record data were analyzed from 907 adults with presumed COVID-19 seen between March 16, 2020 and January 7, 2021. Data included demographics, comorbidities, medications, vital signs, laboratory tests, pulmonary function tests, patient disposition, and co-infections. The overdispersed data (aod) R package was used to create a logit model using COVID-19 diagnosis by PCR as the dichotomous outcome variable. Univariate, conventional multivariate and elastic net machine learning were used to analyze data. RESULTS: Male gender, elevated baseline temperature, and respiratory rate predicted COVID-19 diagnosis. Eosinopenia, neutrophilia, and lymphocytosis were also associated with COVID-19 diagnosis. However, asthma and COPD diagnoses were not associated with SARS-CoV-2 PCR positive test. Male gender, low oxygen saturation, and lower forced expiratory volume in 1 s (FEV1) were associated with higher hospital referral. CONCLUSIONS: CRD patients with acute respiratory symptoms in the ambulatory setting were more likely to have COVID-19 if male, febrile and tachypneic. Patients with lower pre-morbid FEV1 and lower SPO2 are more likely to be referred to the hospital. A composite of vitals sigs and WBC differential help risk stratify CRD patients seeking care for presumed COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste para COVID-19 , Vacinas contra COVID-19 , Febre/diagnóstico , Humanos , Masculino , Encaminhamento e Consulta , Estudos Retrospectivos
17.
Am J Physiol Lung Cell Mol Physiol ; 322(6): L794-L803, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35412858

RESUMO

Primarily caused by chronic cigarette smoking (CS), emphysema is characterized by loss of alveolar cells comprising lung units involved in gas exchange and inflammation that culminate in airspace enlargement. Dysregulation of sphingolipid metabolism with increases of ceramide relative to sphingosine-1 phosphate (S1P) signaling has been shown to cause lung cell apoptosis and is emerging as a potential therapeutic target in emphysema. We sought to determine the impact of augmenting S1P signaling via S1P receptor 1 (S1P1) in a mouse model of CS-induced emphysema. DBA2 mice were exposed to CS for 4 or 6 mo and treated with pharmacological agonists of S1P1: phosphonated FTY720 (FTY720-1S and 2S analogs; 0.01-1.0 mg/kg) or GSK183303A (10 mg/kg). Pharmacological S1P1 agonists ameliorated CS-induced lung parenchymal apoptosis and airspace enlargement as well as loss of body weight. S1P1 agonists had modest inhibitory effects on CS-induced airspace inflammation and lung functional changes measured by Flexivent, improving lung tissue resistance. S1P1 abundance was reduced in chronic CS-conditions and remained decreased after CS-cessation or treatment with FTY720-1S. These results support an important role for S1P-S1P1 axis in maintaining the structural integrity of alveoli during chronic CS exposure and suggest that increasing both S1P1 signaling and abundance may be beneficial to counteract the effects of chronic CS exposure.


Assuntos
Fumar Cigarros , Enfisema Pulmonar , Receptores de Esfingosina-1-Fosfato , Animais , Fumar Cigarros/efeitos adversos , Cloridrato de Fingolimode/efeitos adversos , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Inflamação/complicações , Camundongos , Camundongos Endogâmicos C57BL , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/etiologia , Receptores de Esfingosina-1-Fosfato/agonistas
18.
JAMA ; 327(13): 1284-1285, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35266955
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA