RESUMO
Tissue-specific gene expression is often thought to arise from spatially restricted transcriptional cascades. However, it is unclear how expression is established at the top of these cascades in the absence of pre-existing specificity. We generated a transcriptional network to explore how transcription factor expression is established in the Arabidopsis thaliana root ground tissue. Regulators of the SHORTROOT-SCARECROW transcriptional cascade were validated in planta. At the top of this cascade, we identified both activators and repressors of SHORTROOT. The aggregate spatial expression of these regulators is not sufficient to predict transcriptional specificity. Instead, modeling, transcriptional reporters, and synthetic promoters support a mechanism whereby expression at the top of the SHORTROOT-SCARECROW cascade is established through opposing activities of activators and repressors.
Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Redes Reguladoras de Genes , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Simulação por Computador , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genes Reporter , Genes Sintéticos , Modelos Genéticos , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo , Técnicas do Sistema de Duplo-HíbridoRESUMO
Tissue patterns are dynamically maintained. Continuous formation of plant tissues during postembryonic growth requires asymmetric divisions and the specification of cell lineages. We show that the BIRDs and SCARECROW regulate lineage identity, positional signals, patterning, and formative divisions throughout Arabidopsis root growth. These transcription factors are postembryonic determinants of the ground tissue stem cells and their lineage. Upon further activation by the positional signal SHORT-ROOT (a mobile transcription factor), they direct asymmetric cell divisions and patterning of cell types. The BIRDs and SCARECROW with SHORT-ROOT organize tissue patterns at all formative steps during growth, ensuring developmental plasticity.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Fatores de Transcrição/metabolismo , Arabidopsis/citologia , Divisão Celular/genética , Linhagem da Célula/genética , Raízes de Plantas/citologia , Transcrição GênicaRESUMO
Stem cells are defined by their ability to self-renew and produce daughter cells that proliferate and mature. These maturing cells transition from a proliferative state to a terminal state through the process of differentiation. In the Arabidopsis thaliana root the transcription factors SCARECROW and SHORTROOT regulate specification of the bipotent stem cell that gives rise to cortical and endodermal progenitors. Subsequent progenitor proliferation and differentiation generate mature endodermis, marked by the Casparian strip, a cell-wall modification that prevents ion diffusion into and out of the vasculature. We identified a transcription factor, MYB DOMAIN PROTEIN 36 (MYB36), that regulates the transition from proliferation to differentiation in the endodermis. We show that SCARECROW directly activates MYB36 expression, and that MYB36 likely acts in a feed-forward loop to regulate essential Casparian strip formation genes. We show that myb36 mutants have delayed and defective barrier formation as well as extra divisions in the meristem. Our results demonstrate that MYB36 is a critical positive regulator of differentiation and negative regulator of cell proliferation.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Raízes de Plantas/fisiologia , Fatores de Transcrição/metabolismo , Primers do DNA/genética , Mutagênese , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNARESUMO
Because proteins are the major functional components of cells, knowledge of their cellular localization is crucial to gaining an understanding of the biology of multicellular organisms. We have generated a protein expression map of the Arabidopsis root providing the identity and cell type-specific localization of nearly 2,000 proteins. Grouping proteins into functional categories revealed unique cellular functions and identified cell type-specific biomarkers. Cellular colocalization provided support for numerous protein-protein interactions. With a binary comparison, we found that RNA and protein expression profiles are weakly correlated. We then performed peak integration at cell type-specific resolution and found an improved correlation with transcriptome data using continuous values. We performed GeLC-MS/MS (in-gel tryptic digestion followed by liquid chromatography-tandem mass spectrometry) proteomic experiments on mutants with ectopic and no root hairs, providing complementary proteomic data. Finally, among our root hair-specific proteins we identified two unique regulators of root hair development.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Cromatografia Líquida , Primers do DNA/genética , Perfilação da Expressão Gênica , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Análise Serial de Proteínas , Mapeamento de Interação de Proteínas , Proteoma/genética , Proteoma/metabolismo , Proteômica , RNA de Plantas/genética , RNA de Plantas/metabolismo , Espectrometria de Massas em TandemRESUMO
The Arabidopsis root has been the subject of intense research over the past decades. This research has led to significantly improved understanding of the molecular mechanisms underlying root development. Key insights into the specification of individual cell types, cell patterning, growth and differentiation, branching of the primary root, and responses of the root to the environment have been achieved. Transcription factors and plant hormones play key regulatory roles. Recently, mechanisms involving protein movement and the oscillation of gene expression have also been uncovered. Root gene regulatory networks controlling root development have been reconstructed from genome-wide profiling experiments, revealing novel molecular connections and models. Future refinement of these models will lead to a more complete description of the complex molecular interactions that give rise to a simple growing root.
Assuntos
Arabidopsis/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/fisiologia , Diferenciação Celular/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas/genética , Meristema/citologia , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/embriologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Small non-coding RNAs (ncRNAs) are key regulators of plant development through modulation of the processing, stability, and translation of larger RNAs. We present small RNA data sets comprising more than 200 million aligned Illumina sequence reads covering all major cell types of the root as well as four distinct developmental zones. MicroRNAs (miRNAs) constitute a class of small ncRNAs that are particularly important for development. Of the 243 known miRNAs, 133 were found to be expressed in the root, and most showed tissue- or zone-specific expression patterns. We identified 66 new high-confidence miRNAs using a computational pipeline, PIPmiR, specifically developed for the identification of plant miRNAs. PIPmiR uses a probabilistic model that combines RNA structure and expression information to identify miRNAs with high precision. Knockdown of three of the newly identified miRNAs results in altered root growth phenotypes, confirming that novel miRNAs predicted by PIPmiR have functional relevance.
Assuntos
Arabidopsis/fisiologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/fisiologia , MicroRNAs/biossíntese , Modelos Biológicos , RNA de Plantas/biossíntese , MicroRNAs/genética , Especificidade de Órgãos/fisiologia , RNA de Plantas/genéticaRESUMO
Stress responses in plants are tightly coordinated with developmental processes, but interaction of these pathways is poorly understood. We used genome-wide assays at high spatiotemporal resolution to understand the processes that link development and stress in the Arabidopsis root. Our meta-analysis finds little evidence for a universal stress response. However, common stress responses appear to exist with many showing cell type specificity. Common stress responses may be mediated by cell identity regulators because mutations in these genes resulted in altered responses to stress. Evidence for a direct role for cell identity regulators came from genome-wide binding profiling of the key regulator SCARECROW, which showed binding to regulatory regions of stress-responsive genes. Coexpression in response to stress was used to identify genes involved in specific developmental processes. These results reveal surprising linkages between stress and development at cellular resolution, and show the power of multiple genome-wide data sets to elucidate biological processes.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Estresse Fisiológico/genética , Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Biomarcadores/metabolismo , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Genoma de Planta , Análise de Sequência com Séries de Oligonucleotídeos , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Transcrição GênicaRESUMO
Cellular responses often involve a transition of cells from one state to another. A transition from a stem cell to a differentiated cell state, for example, might occur in response to gene expression changes induced by a transcription factor, or to signaling cascades triggered by a hormone or pathogen. Regulatory networks are thought to control such cellular transitions. Thus, many researchers are interested in reconstructing regulatory networks, not only with the aim of gaining a deeper understanding of cellular transitions, but also of using networks to predict and potentially manipulate cellular transitions and outcomes. In this review, we highlight approaches to the reconstruction of regulatory networks underlying cellular transitions, with special attention to transcriptional regulatory networks. We describe recent regulatory network reconstructions in a variety of organisms, and discuss the success they share in identifying new regulatory components, shared relationships and phenotypic outcomes.
Assuntos
Regulação da Expressão Gênica/fisiologia , Redes Reguladoras de Genes , Genes Reguladores/fisiologia , Animais , Genes Reguladores/genética , Humanos , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Transcrição GênicaRESUMO
Asymmetric cell division generates cell types with different specialized functions or fates. This type of division is critical to the overall cellular organization and development of many multicellular organisms. In plants, regulated asymmetric cell divisions are of particular importance because cell migration does not occur. The influence of extrinsic cues on asymmetric cell division in plants is well documented. Recently, candidate intrinsic factors have been identified and links between intrinsic and extrinsic components are beginning to be elucidated. A novel mechanism in breaking symmetry was revealed that involves the movement of typically intrinsic factors between plant cells. As we learn more about the regulation of asymmetric cell divisions in plants, we can begin to reflect on the similarities and differences between the strategies used by plants and animals. Focusing on the underlying molecular mechanisms, this article describes three selected cases of symmetry-breaking events in the model plant Arabidopsis thaliana. These examples occur in early embryogenesis, stomatal development, and ground tissue formation in the root.
Assuntos
Arabidopsis/fisiologia , Proteínas de Plantas/metabolismo , Arabidopsis/embriologia , Arabidopsis/metabolismo , Divisão Celular , Proteínas de Homeodomínio/metabolismo , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/metabolismo , Estômatos de Plantas , Transdução de SinaisRESUMO
Developmental patterning events involve cell fate specification and maintenance processes in diverse, multicellular organisms. The simple arrangement of tissue layers in the Arabidopsis thaliana root provides a highly tractable system for the study of these processes. This review highlights recent work addressing the patterning of root tissues focusing on the factors involved and their complex regulation. In the past two years studies of root patterning have indicated that chromatin remodeling, protein movement, transcriptional networks, and an auxin gradient, all contribute to the complexity inherent in developmental patterning events within the root. As a result, future research advances in this field will require tissue-specific information at both the single gene and global level.