Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(2): 767-777, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38157547

RESUMO

Understanding the physics of lignin will help rationalize its function in plant cell walls as well as aiding practical applications such as deriving biofuels and bioproducts. Here, we present SPRIG (Simple Polydisperse Residue Input Generator), a program for generating atomic-detail models of random polydisperse lignin copolymer melts i.e., the state most commonly found in nature. Using these models, we use all-atom molecular dynamics (MD) simulations to investigate the conformational and dynamic properties of polydisperse melts representative of switchgrass (Panicum virgatum L.) lignin. Polydispersity, branching and monolignol sequence are found to not affect the calculated glass transition temperature, Tg. The Flory-Huggins scaling parameter for the segmental radius of gyration is 0.42 ± 0.02, indicating that the chains exhibit statistics that lie between a globular chain and an ideal Gaussian chain. Below Tg the atomic mean squared displacements are independent of molecular weight. In contrast, above Tg, they decrease with increasing molecular weight. Therefore, a monodisperse lignin melt is a good approximation to this polydisperse lignin when only static properties are probed, whereas the molecular weight distribution needs to be considered while analyzing lignin dynamics.


Assuntos
Lignina , Lignina/química , Plantas Geneticamente Modificadas , Temperatura de Transição
2.
Biophys J ; 122(22): 4326-4335, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37838830

RESUMO

The dynamics and local structure of the hydration water on surfaces of folded proteins have been extensively investigated. However, our knowledge of the hydration of intrinsically disordered proteins (IDPs) is more limited. Here, we compare the local structure of water molecules hydrating a globular protein, lysozyme, and the intrinsically disordered N-terminal of c-Src kinase (SH4UD) using molecular dynamics simulation. The radial distributions from the protein surface of the first and the second hydration shells are similar for the folded protein and the IDP. However, water molecules in the first hydration shell of both the folded protein and the IDP are perturbed from the bulk. This perturbation involves a loss of tetrahedrality, which is, however, significantly more marked for the folded protein than the IDP. This difference arises from an increase in the first hydration shell of the IDP of the fraction of hydration water molecules interacting with oxygen. The water ordering is independent of the compactness of the IDP. In contrast, the lifetimes of water molecules in the first hydration shell increase with IDP compactness, indicating a significant impact of IDP configuration on water surface pocket kinetics, which here is linked to differential pocket volumes and polarities.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Água/química , Simulação de Dinâmica Molecular , Proteínas de Membrana , Conformação Proteica
3.
Acta Crystallogr D Struct Biol ; 79(Pt 5): 420-434, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37092970

RESUMO

The contrast-variation method in small-angle neutron scattering (SANS) is a uniquely powerful technique for determining the structure of individual components in biomolecular systems containing regions of different neutron scattering length density ρ. By altering the ρ of the target solute and the solvent through judicious incorporation of deuterium, the scattering of desired solute features can be highlighted. Most contrast-variation methods focus on highlighting specific bulk solute elements, but not on how the scattering at specific scattering vectors q, which are associated with specific structural distances, changes with contrast. Indeed, many systems exhibit q-dependent contrast effects. Here, a method is presented for calculating both bulk contrast-match points and q-dependent contrast using 3D models with explicit solute and solvent atoms and SASSENA, an explicit-atom SANS calculator. The method calculates the bulk contrast-match points within 2.4% solvent D2O accuracy for test protein-nucleic acid and lipid nanodisc systems. The method incorporates a general model for the incorporation of deuterium at non-exchangeable sites that was derived by performing mass spectrometry on green fluorescent protein. The method also decomposes the scattering profile into its component parts and identifies structural features that change with contrast. The method is readily applicable to a variety of systems, will expand the understanding of q-dependent contrast matching and will aid in the optimization of next-generation neutron scattering experiments.


Assuntos
Difração de Nêutrons , Nêutrons , Deutério/química , Espalhamento a Baixo Ângulo , Difração de Nêutrons/métodos , Solventes , Biologia
4.
Biomacromolecules ; 24(2): 714-723, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36692364

RESUMO

c-Src kinase is a multidomain non-receptor tyrosine kinase that aberrantly phosphorylates several signaling proteins in cancers. Although the structural properties of the regulatory domains (SH3-SH2) and the catalytic kinase domain have been extensively characterized, there is less knowledge about the N-terminal disordered region (SH4UD) and its interactions with the other c-Src domains. Here, we used domain-selective isotopic labeling combined with the small-angle neutron scattering contrast matching technique to study SH4UD interactions with SH3-SH2. Our results show that in the presence of SH4UD, the radius of gyration (Rg) of SH3-SH2 increases, indicating that it has a more extended conformation. Hamiltonian replica exchange molecular dynamics simulations provide a detailed molecular description of the structural changes in SH4UD-SH3-SH2 and show that the regulatory loops of SH3 undergo significant conformational changes in the presence of SH4UD, while SH2 remains largely unchanged. Overall, this study highlights how a disordered region can drive a folded region of a multidomain protein to become flexible, which may be important for allosteric interactions with binding partners. This may help in the design of therapeutic interventions that target the regulatory domains of this important family of kinases.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas pp60(c-src) , Domínio Catalítico , Domínios Proteicos
5.
Phys Chem Chem Phys ; 24(46): 28403-28410, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36398692

RESUMO

Alternation in various properties of n-alkanes (CnH2n+2) as a function of carbon content (n) is termed 'odd-even effect'. Here, we report a comprehensive molecular dynamics simulation study on n-alkane systems carried out with n ranging between 3 (propane) and 8 (octane), examining the odd-even effect in melting point, density, intramolecular conformational ordering, translational and rotational motion. We observe an odd-even alternation in these properties, but with heptane (n = 7) exhibiting anomalous behavior for all except conformational ordering. Our simulations also show the presence of odd-even behavior in rotational and translational dynamics, below and above the melting point, respectively. The results highlight the role of both molecular shape and the variation in density and their interplay in the origins of the odd-even effect.


Assuntos
Alcanos , Simulação de Dinâmica Molecular , Propano , Heptanos , Carbono
6.
J Chem Inf Model ; 62(15): 3627-3637, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35868851

RESUMO

Fibroblast growth factor 23 (FGF23) is a therapeutic target for treating hereditary and acquired hypophosphatemic disorders, such as X-linked hypophosphatemic (XLH) rickets and tumor-induced osteomalacia (TIO), respectively. FGF23-induced hypophosphatemia is mediated by signaling through a ternary complex formed by FGF23, the FGF receptor (FGFR), and α-Klotho. Currently, disorders of excess FGF23 are treated with an FGF23-blocking antibody, burosumab. Small-molecule drugs that disrupt protein/protein interactions necessary for the ternary complex formation offer an alternative to disrupting FGF23 signaling. In this study, the FGF23:α-Klotho interface was targeted to identify small-molecule protein/protein interaction inhibitors since it was computationally predicted to have a large fraction of hot spots and two druggable residues on α-Klotho. We further identified Tyr433 on the KL1 domain of α-Klotho as a promising hot spot and α-Klotho as an appropriate drug-binding target at this interface. Subsequently, we performed in silico docking of ∼5.5 million compounds from the ZINC database to the interface region of α-Klotho from the ternary crystal structure. Following docking, 24 and 20 compounds were in the final list based on the lowest binding free energies to α-Klotho and the largest number of contacts with Tyr433, respectively. Five compounds were assessed experimentally by their FGF23-mediated extracellular signal-regulated kinase (ERK) activities in vitro, and two of these reduced activities significantly. Both these compounds were predicted to have favorable binding affinities to α-Klotho but not have a large number of contacts with the hot spot Tyr433. ZINC12409120 was found experimentally to disrupt FGF23:α-Klotho interaction to reduce FGF23-mediated ERK activities by 70% and have a half maximal inhibitory concentration (IC50) of 5.0 ± 0.23 µM. Molecular dynamics (MD) simulations of the ZINC12409120:α-Klotho complex starting from in silico docking poses reveal that the ligand exhibits contacts with residues on the KL1 domain, the KL1-KL2 linker, and the KL2 domain of α-Klotho simultaneously, thereby possibly disrupting the regular function of α-Klotho and impeding FGF23:α-Klotho interaction. ZINC12409120 is a candidate for lead optimization.


Assuntos
Fator de Crescimento de Fibroblastos 23 , Hipofosfatemia , Fator de Crescimento de Fibroblastos 23/antagonistas & inibidores , Humanos , Hipofosfatemia/tratamento farmacológico , Hipofosfatemia/metabolismo , Proteínas Klotho , Simulação de Acoplamento Molecular , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas
8.
Commun Biol ; 4(1): 243, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623120

RESUMO

Molecular dynamics (MD) simulation is widely used to complement ensemble-averaged experiments of intrinsically disordered proteins (IDPs). However, MD often suffers from limitations of inaccuracy. Here, we show that enhancing the sampling using Hamiltonian replica-exchange MD (HREMD) led to unbiased and accurate ensembles, reproducing small-angle scattering and NMR chemical shift experiments, for three IDPs of varying sequence properties using two recently optimized force fields, indicating the general applicability of HREMD for IDPs. We further demonstrate that, unlike HREMD, standard MD can reproduce experimental NMR chemical shifts, but not small-angle scattering data, suggesting chemical shifts are insufficient for testing the validity of IDP ensembles. Surprisingly, we reveal that despite differences in their sequence, the inter-chain statistics of all three IDPs are similar for short contour lengths (< 10 residues). The results suggest that the major hurdle of generating an accurate unbiased ensemble for IDPs has now been largely overcome.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Simulação de Dinâmica Molecular , Histatinas/química , Histatinas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Luz , Difração de Nêutrons , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteína Proto-Oncogênica c-fli-1/química , Proteína Proto-Oncogênica c-fli-1/metabolismo , Reprodutibilidade dos Testes , Espalhamento a Baixo Ângulo , Relação Estrutura-Atividade
9.
Mol Pharmacol ; 101(6): 408-421, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-35339985

RESUMO

Excess fibroblast growth factor (FGF) 23 causes hereditary hypophosphatemic rickets, such as X-linked hypophosphatemia (XLH) and tumor-induced osteomalacia (TIO). A small molecule that specifically binds to FGF23 to prevent activation of the fibroblast growth factor receptor/α-Klotho complex has potential advantages over the currently approved systemically administered FGF23 blocking antibody. Using structure-based drug design, we previously identified ZINC13407541 (N-[[2-(2-phenylethenyl)cyclopenten-1-yl]methylidene]hydroxylamine) as a small molecule antagonist for FGF23. Additional structure-activity studies developed a series of ZINC13407541 analogs with enhanced drug-like properties. In this study, we tested in a preclinical Hyp mouse homolog of XLH a direct connect analog [(E)-2-(4-(tert-butyl)phenyl)cyclopent-1-ene-1-carbaldehyde oxime] (8n), which exhibited the greatest stability in microsomal assays, and [(E)-2-((E)-4-methylstyryl)benzaldehyde oxime] (13a), which exhibited increased in vitro potency. Using cryo-electron microscopy structure and computational docking, we identified a key binding residue (Q156) of the FGF23 antagonists, ZINC13407541, and its analogs (8n and 13a) in the N-terminal domain of FGF23 protein. Site-directed mutagenesis and bimolecular fluorescence complementation-fluorescence resonance energy transfer assay confirmed the binding site of these three antagonists. We found that pharmacological inhibition of FGF23 with either of these compounds blocked FGF23 signaling and increased serum phosphate and 1,25-dihydroxyvitamin D [1,25(OH)2D] concentrations in Hyp mice. Long-term parenteral treatment with 8n or 13a also enhanced linear bone growth, increased mineralization of bone, and narrowed the growth plate in Hyp mice. The more potent 13a compound had greater therapeutic effects in Hyp mice. Further optimization of these FGF23 inhibitors may lead to versatile drugs to treat excess FGF23-mediated disorders. SIGNIFICANCE STATEMENT: This study used structure-based drug design and medicinal chemistry approaches to identify and optimize small molecules with different stability and potency, which antagonize excessive actions of fibroblast growth factor 23 (FGF23) in hereditary hypophosphatemic rickets. The findings confirmed that these antagonists bind to the N-terminus of FGF23 to inhibit its binding to and activation of the fibroblast growth factor receptors/α-Klotho signaling complex. Administration of these lead compounds improved phosphate homeostasis and abnormal skeletal phenotypes in a preclinical Hyp mouse model.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Fator de Crescimento de Fibroblastos 23 , Fosfatos , Animais , Microscopia Crioeletrônica , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Raquitismo Hipofosfatêmico Familiar/metabolismo , Fator de Crescimento de Fibroblastos 23/antagonistas & inibidores , Camundongos , Oximas , Fosfatos/sangue , Receptores de Fatores de Crescimento de Fibroblastos
10.
Proc Natl Acad Sci U S A ; 117(29): 16776-16781, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32636260

RESUMO

A particularly promising approach to deconstructing and fractionating lignocellulosic biomass to produce green renewable fuels and high-value chemicals pretreats the biomass with organic solvents in aqueous solution. Here, neutron scattering and molecular-dynamics simulations reveal the temperature-dependent morphological changes in poplar wood biomass during tetrahydrofuran (THF):water pretreatment and provide a mechanism by which the solvent components drive efficient biomass breakdown. Whereas lignin dissociates over a wide temperature range (>25 °C) cellulose disruption occurs only above 150 °C. Neutron scattering with contrast variation provides direct evidence for the formation of THF-rich nanoclusters (Rg ∼ 0.5 nm) on the nonpolar cellulose surfaces and on hydrophobic lignin, and equivalent water-rich nanoclusters on polar cellulose surfaces. The disassembly of the amphiphilic biomass is thus enabled through the local demixing of highly functional cosolvents, THF and water, which preferentially solvate specific biomass surfaces so as to match the local solute polarity. A multiscale description of the efficiency of THF:water pretreatment is provided: matching polarity at the atomic scale prevents lignin aggregation and disrupts cellulose, leading to improvements in deconstruction at the macroscopic scale.


Assuntos
Biotecnologia/métodos , Lignina/química , Madeira/química , Proteínas de Bactérias/metabolismo , Biomassa , Celulase/metabolismo , Furanos/química , Gluconacetobacter xylinus/enzimologia , Hidrólise , Lignina/metabolismo , Populus/química , Solventes/química , Tensoativos/química
11.
Biophys J ; 119(1): 142-150, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32533942

RESUMO

The mesophilic inorganic pyrophosphatase from Escherichia coli (EcPPase) retains function at 353 K, the physiological temperature of hyperthermophilic Thermococcus thioreducens, whereas the homolog protein (TtPPase) from this hyperthermophilic organism cannot function at room temperature. To explain this asymmetric behavior, we examined structural and dynamical properties of the two proteins using molecular dynamics simulations. The global flexibility of TtPPase is significantly higher than its mesophilic homolog at all tested temperature/pressure conditions. However, at 353 K, EcPPase reduces its solvent-exposed surface area and increases subunit compaction while maintaining flexibility in its catalytic pocket. In contrast, TtPPase lacks this adaptability and has increased rigidity and reduced protein/water interactions in its catalytic pocket at room temperature, providing a plausible explanation for its inactivity near room temperature.


Assuntos
Simulação de Dinâmica Molecular , Thermococcus , Temperatura Alta , Conformação Proteica , Pirofosfatases , Temperatura
12.
Biochim Biophys Acta Gen Subj ; 1864(5): 129547, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32032657

RESUMO

BACKGROUND: Lignin, the second most abundant biopolymer on earth, plays a major structural role in plants, conferring mechanical strength and regulating water conduction. Understanding the three-dimensional structure of lignin is important for fundamental reasons as well as engineering plants towards lignin valorization. Lignin lacks a specific primary sequence, making its average chemical composition the focus of most recent studies. However, it remains unclear whether the 3D structure of lignin molecules depends on their sequence. METHODS: We performed all-atom molecular dynamics simulation of three S/G-lignin molecules with the same average composition but different sequence. RESULTS: A detailed statistical analysis of the radius of gyration and relative shape anisotropy reveals that the lignin sequence has no statistically significant effect on the global three-dimensional structure. We found however, that homopolymers of C-lignin with the same molecular weight have smaller radii of gyration than S/G-lignin. We attribute this to lower hydroxyl content of C-lignin, which makes it more compact and rigid. CONCLUSIONS: The 3D structure of lignin is influenced by the overall content of monomeric units and interunit linkages and not by its precise primary sequence. GENERAL SIGNIFICANCE: Lignin is assumed to not have a well-defined primary structure. The results presented here demonstrate there are no significant differences in the global 3D structure of lignin molecules with the same average composition but different primary sequence.


Assuntos
Parede Celular/química , Lignina/química , Plantas/química , Conformação Molecular , Simulação de Dinâmica Molecular
13.
Langmuir ; 36(4): 1043-1052, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31944772

RESUMO

Titanium dioxide (TiO2) nanoparticles are found in an array of consumer and industrial products, and human exposure to these nanoparticles involves interaction with biological membranes. To understand the effect of the membrane lipid composition on bilayer perturbation by TiO2, we performed all-atom molecular dynamics simulations of nanosized TiO2 interacting with three single component bilayers differing only in their headgroup composition: the zwitterionic DOPC, which is overall neutral containing negatively charged phosphate and positively charged choline in its head, DOPG, which is overall anionic containing negatively charged phosphate and neutral glycerol, and the anionic DOPS, containing negatively charged phosphate attached to the hydroxyl side-chain of the amino acid, serine containing negatively charged carboxyl and positively charged ammonium. The nanoparticle adheres to all three bilayers causing a negative curvature on their top leaflet. However, the local deformation of DOPG was more pronounced than DOPC and DOPS. The anionic DOPG, which is the thinnest of the three bilayers, interacted most strongly with the TiO2. DOPS has the next strongest interaction; however, its high bending modulus enables it to resist deformation by the nanoparticle. DOPC has the weakest interaction with the nanoparticle of the three as it has the highest bending modulus and its zwitterionic head groups have strong cohesive interactions. We also observed a nonuniform response of the bilayers: the orientational order of the lipids near the nanoparticle decreases, while that of the lipids away from the nanoparticle increases. The overall thickness and bending modulus of DOPG increased upon contact with the nanoparticle owing to overall stiffening of the bilayer despite local softening, while the average structural and mechanical properties of DOPC and DOPS remain unchanged, which can be explained in part by the greater bilayer bending elasticicty of DOPC and DOPS. The above findings suggest that regions of biological membranes populated by anionic lipids with weaker bending elasticity will be more susceptible to perturbation by TiO2 nanoparticles than zwitterionic-rich regions.


Assuntos
Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Titânio/química , Adesividade
14.
Proc Natl Acad Sci U S A ; 116(41): 20446-20452, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548393

RESUMO

Intrinsically disordered proteins (IDPs) are abundant in eukaryotic proteomes, play a major role in cell signaling, and are associated with human diseases. To understand IDP function it is critical to determine their configurational ensemble, i.e., the collection of 3-dimensional structures they adopt, and this remains an immense challenge in structural biology. Attempts to determine this ensemble computationally have been hitherto hampered by the necessity of reweighting molecular dynamics (MD) results or biasing simulation in order to match ensemble-averaged experimental observables, operations that reduce the precision of the generated model because different structural ensembles may yield the same experimental observable. Here, by employing enhanced sampling MD we reproduce the experimental small-angle neutron and X-ray scattering profiles and the NMR chemical shifts of the disordered N terminal (SH4UD) of c-Src kinase without reweighting or constraining the simulations. The unbiased simulation results reveal a weakly funneled and rugged free energy landscape of SH4UD, which gives rise to a heterogeneous ensemble of structures that cannot be described by simple polymer theory. SH4UD adopts transient helices, which are found away from known phosphorylation sites and could play a key role in the stabilization of structural regions necessary for phosphorylation. Our findings indicate that adequately sampled molecular simulations can be performed to provide accurate physical models of flexible biosystems, thus rationalizing their biological function.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , Humanos , Modelos Químicos , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
15.
Front Mol Biosci ; 6: 64, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475155

RESUMO

Intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs) play important roles in many aspects of normal cell physiology, such as signal transduction and transcription, as well as pathological states, including Alzheimer's, Parkinson's, and Huntington's disease. Unlike their globular counterparts that are defined by a few structures and free energy minima, IDP/IDR comprise a large ensemble of rapidly interconverting structures and a corresponding free energy landscape characterized by multiple minima. This aspect has precluded the use of structural biological techniques, such as X-ray crystallography and nuclear magnetic resonance (NMR) for resolving their structures. Instead, low-resolution techniques, such as small-angle X-ray or neutron scattering (SAXS/SANS), have become a mainstay in characterizing coarse features of the ensemble of structures. These are typically complemented with NMR data if possible or computational techniques, such as atomistic molecular dynamics, to further resolve the underlying ensemble of structures. However, over the past 10-15 years, it has become evident that the classical, pairwise-additive force fields that have enjoyed a high degree of success for globular proteins have been somewhat limited in modeling IDP/IDR structures that agree with experiment. There has thus been a significant effort to rehabilitate these models to obtain better agreement with experiment, typically done by optimizing parameters in a piecewise fashion. In this work, we take a different approach by optimizing a set of force field parameters simultaneously, using machine learning to adapt force field parameters to experimental SAXS scattering profiles. We demonstrate our approach in modeling three biologically IDP ensembles based on experimental SAXS profiles and show that our optimization approach significantly improve force field parameters that generate ensembles in better agreement with experiment.

16.
J Am Chem Soc ; 141(32): 12545-12557, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31304747

RESUMO

The complex structure of plant cell walls resists chemical or biological degradation, challenging the breakdown of lignocellulosic biomass into renewable chemical precursors that could form the basis of future production of green chemicals and transportation fuels. Here, experimental and computational results reveal that the effect of the tetrahydrofuran (THF)-water cosolvents on the structure of lignin and on its interactions with cellulose in the cell wall drives multiple synergistic mechanisms leading to the efficient breakdown and fractionation of biomass into valuable chemical precursors. Molecular simulations show that THF-water is an excellent "theta" solvent, such that lignin dissociates from itself and from cellulose and expands to form a random coil. The expansion of the lignin molecules exposes interunit linkages, rendering them more susceptible to depolymerization by acid-catalyzed cleavage of aryl-ether bonds. Nanoscale infrared sensors confirm cosolvent-mediated molecular rearrangement of lignin in the cell wall of micrometer-thick hardwood slices and track the disappearance of lignin. At bulk scale, adding dilute acid to the cosolvent mixture liberates the majority of the hemicellulose and lignin from biomass, allowing unfettered access of cellulolytic enzymes to the remaining cellulose-rich material, allowing them to sustain high rates of hydrolysis to glucose without enzyme deactivation. Through this multiscale analysis, synergistic mechanisms for biomass deconstruction are identified, portending a paradigm shift toward first-principles design and evaluation of other cosolvent methods to realize low cost fuels and bioproducts.


Assuntos
Biomassa , Celulose/química , Furanos/química , Lignina/química , Solventes/química , Água/química , Acer/química , Hidrólise , Simulação de Dinâmica Molecular , Polissacarídeos/química
17.
J Agric Food Chem ; 67(25): 6970-6977, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31150237

RESUMO

Huanglongbing (HLB), also known as citrus greening, is a bacterial disease that poses a devastating threat to the citrus industry worldwide. To manage this disease efficiently, we developed and characterized a ternary aqueous solution (TSOL) that contains zinc nitrate, urea, and hydrogen peroxide. We report that TSOL exhibits better antimicrobial activity than commercial bactericides for growers. X-ray fluorescence analysis demonstrates that zinc is delivered to citrus leaves, where the bacteria reside. FTIR and Raman spectroscopy, molecular dynamics simulations, and density functional theory calculations elucidate the solution structure of TSOL and reveal a water-mediated interaction between Zn2+ and H2O2, which may facilitate the generation of highly reactive hydroxyl radicals contributing to superior antimicrobial activity of TSOL. Our results not only suggest TSOL as a potent antimicrobial agent to suppress bacterial growth in HLB-infected trees, but also provide a structure-property relationship that explains the superior performance of TSOL.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Citrus/microbiologia , Nitratos/química , Nitratos/farmacologia , Doenças das Plantas/prevenção & controle , Rhizobiaceae/fisiologia , Compostos de Zinco/química , Compostos de Zinco/farmacologia , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Rhizobiaceae/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Relação Estrutura-Atividade , Ureia/química , Ureia/farmacologia
18.
Interdiscip Sci ; 11(3): 485-495, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29582245

RESUMO

Density functional theory calculations were performed to assess the relative interaction energies of plant cell wall components: cellulose, xylan, lignin and pectin. Monomeric and tetramer linear molecules were allowed to interact in four different configurations for each pair of compounds. The M05-2X exchange-correlation functional which implicitly accounts for short- and mid-range dispersion was compared against MP2 and RI-MP2 to assess the reliability of the former for modeling van der Waals forces between these PCW components. Solvation effects were examined by modeling the interactions in the gas phase, in explicit H2O, and in polarized continuum models (PCM) of solvation. PCMs were used to represent water, methanol, and chloroform. The results predict the relative ranges of each type of interaction and when specific configurations will be strongly preferred. Structures and energies are useful as a basis for testing classical force fields and as guidance for coarse-grained models of PCWs.


Assuntos
Parede Celular/química , Lignina/química , Pectinas/química , Plantas/química , Xilanos/química , Celulose/química , Clorofórmio/química , Glucose/química , Ligação de Hidrogênio , Metanol/química , Polissacarídeos/química , Teoria Quântica , Reprodutibilidade dos Testes , Solventes/química , Termodinâmica , Água/química
19.
Phys Chem Chem Phys ; 20(31): 20504-20512, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30046795

RESUMO

The dynamics of lignin, a complex and heterogeneous major plant cell-wall macromolecule, is of both fundamental and practical importance. Lignin is typically heated to temperatures above its glass transition to facilitate its industrial processing. We performed molecular dynamics simulations to investigate the segmental (α) relaxation of lignin, the dynamical process that gives rise to the glass transition. It is found that lignin dynamics involves mainly internal motions below Tg, while segmental inter-molecular motions are activated above Tg. The segments whose mobility is enhanced above Tg consist of 3-5 lignin monomeric units. The temperature dependence of the lignin segmental relaxation time changes from Arrhenius below Tg to Vogel-Fulcher-Tamman above Tg. This change in temperature dependence is determined by the underlying energy landscape being restricted below Tg but exhibiting multiple minima above Tg. The Q-dependence of the relaxation time is found to obey a power-law up to Qmax, indicative of sub-diffusive motion of lignin above Tg. Temperature and hydration affect the segmental relaxation similarly. Increasing hydration or temperature leads to: (1) the α process starting earlier, i.e. the beta process becomes shortened, (2) Qmax decreasing, i.e. the lengthscale above which subdiffusion is observed increases, and (3) the number of monomers constituting a segment increasing, i.e. the motions that lead to the glass transition become more collective. The above findings provide molecular-level understanding of the technologically important segmental motions of lignin and demonstrate that, despite the heterogeneous and complex structure of lignin, its segmental dynamics can be described by concepts developed for chemically homogeneous polymers.


Assuntos
Lignina/química , Cristalização , Simulação de Dinâmica Molecular , Transição de Fase , Análise de Componente Principal , Termodinâmica , Temperatura de Transição , Água/química
20.
Annu Rev Biophys ; 47: 335-354, 2018 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-29561628

RESUMO

Dynamic neutron scattering directly probes motions in biological systems on femtosecond to microsecond timescales. When combined with molecular dynamics simulation and normal mode analysis, detailed descriptions of the forms and frequencies of motions can be derived. We examine vibrations in proteins, the temperature dependence of protein motions, and concepts describing the rich variety of motions detectable using neutrons in biological systems at physiological temperatures. New techniques for deriving information on collective motions using coherent scattering are also reviewed.


Assuntos
Nêutrons/uso terapêutico , Humanos , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA