Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(2): 460-463, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638483

RESUMO

Continuously variable true-time optical delay lines are typically subject to a constraint of the bandwidth-delay product, limiting their use in several applications. In this Letter, we propose an integrated topology that breaks the bandwidth-delay product limit. The device is based on multiple Mach-Zehnder Interferometers (MZIs) arranged in parallel, providing easier control and a larger bandwidth compared to ring resonator-based solutions. The functionality of this architecture is demonstrated with a 4-stage delay line by performing measurements in both the time and frequency domains. The delay line introduces a delay of 90 ps over a bandwidth of more than 22 GHz with a negligible group delay distortion, operates on a wavelength range of about 60 nm, and is scalable to a higher number of MZI stages.

2.
Opt Lett ; 47(6): 1327-1330, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35290305

RESUMO

On-chip optical power monitors are essential elements to calibrate, stabilize, and reconfigure photonic integrated circuits. Many applications require in-line waveguide detectors, where a trade-off has to be found between large sensitivity and high transparency to the guided light. In this work, we demonstrate a transparent photoconductor integrated on standard low-doped silicon-on-insulator waveguides that reaches a photoconductive gain of more than 106 and an in-line sensitivity as high as -60 dBm. This performance is achieved by compensating the effect of electric charges in the cladding oxide through a bias voltage applied to the chip substrate or locally through a gate electrode on top of the waveguide, allowing one to tune on demand the conductivity of the core to the optimum level.

3.
Opt Lett ; 46(19): 5023-5026, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598260

RESUMO

Nonlinear effects limit the maximum amount of optical power that can be handled by silicon photonic integrated circuits (PICs). This limitation is particularly tight in resonant devices such as microring resonator (MRR) filters, suffering from a power-dependent resonance spread due to intracavity power enhancement. In this Letter, we present an automatic control system that can dynamically mitigate the nonlinear spectral distortion of silicon MRR filters by thermally controlling each MRR. The benefit of the proposed scheme is demonstrated on the spectral response of a polarization-transparent coupled-MRR filter operating on a 200 Gbit/s signal. The proposed technique, which does not require a priori information on the PIC topology and functionality, is scalable to more complex architectures and can be employed to compensate for generic nonlinear effects in different photonic platforms.

4.
Nat Commun ; 12(1): 4324, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267203

RESUMO

Flexible optical networks require reconfigurable devices with operation on a wavelength range of several tens of nanometers, hitless tuneability (i.e. transparency to other channels during reconfiguration), and polarization independence. All these requirements have not been achieved yet in a single photonic integrated device and this is the reason why the potential of integrated photonics is still largely unexploited in the nodes of optical communication networks. Here we report on a fully-reconfigurable add-drop silicon photonic filter, which can be tuned well beyond the extended C-band (almost 100 nm) in a complete hitless (>35 dB channel isolation) and polarization transparent (1.2 dB polarization dependent loss) way. This achievement is the result of blended strategies applied to the design, calibration, tuning and control of the device. Transmission quality assessment on dual polarization 100 Gbit/s (QPSK) and 200 Gbit/s (16-QAM) signals demonstrates the suitability for dynamic bandwidth allocation in core networks, backhaul networks, intra- and inter-datacenter interconnects.

5.
Int J Nanomedicine ; 16: 4045-4061, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163158

RESUMO

PURPOSE: Previous studies demonstrated the possibility of targeting tumor-angiogenic endothelial cells with positively charged nanocarriers, such as cationic liposomes. We investigated the active targeting potential of positively charged nanoparticles in combination with the heat-induced drug release function of thermosensitive liposomes (TSL). This novel dual-targeted approach via cationic TSL (CTSL) was thoroughly explored using either a novel synthetic phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol (DPPG2) or a conventional polyethylene glycol (PEG) surface modification. Anionic particles containing either DPPG2 or PEG were also included in the study to highlight difference in tumor enrichment driven by surface charge. With this study, we aim to provide a deep insight into the main differences between DPPG2- and PEG-functionalized liposomes, focusing on the delivery of a well-known cytotoxic drug (doxorubicin; DOX) in combination with local hyperthermia (HT, 41-43°C). MATERIALS AND METHODS: DPPG2- and PEG-based cationic TSLs (PG2-CTSL/PEG-CTSL) were thoroughly analyzed for size, surface charge, and heat-triggered DOX release. Cancer cell targeting and DOX delivery was evaluated by FACS, fluorescence imaging, and HPLC. In vivo particle behavior was analyzed by assessing DOX biodistribution with local HT application in tumor-bearing animals. RESULTS: The absence of PEG in PG2-CTSL promoted more efficient liposome-cell interactions, resulting in a higher DOX delivery and cancer cell toxicity compared with PEG-CTSL. By exploiting the dual-targeting function of CTSLs, we were able to selectively trigger DOX release in the intracellular compartment by HT. When tested in vivo, local HT promoted an increase in intratumoral DOX levels for all (C)TSLs tested, with DOX enrichment factors ranging from 3 to 14-fold depending on the type of formulation. CONCLUSION: Cationic particles showed lower hemocompatibility than their anionic counterparts, which was partially mitigated when PEG was grafted on the liposome surface. DPPG2-based anionic TSL showed optimal local drug delivery compared to all other formulations tested, demonstrating the potential advantages of using DPPG2 lipid in designing liposomes for tumor-targeted applications.


Assuntos
Comunicação Celular , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Fosfatidilgliceróis/química , Polietilenoglicóis/química , Temperatura , Animais , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Concentração Inibidora 50 , Espaço Intracelular/metabolismo , Lipossomos , Polietilenoglicóis/administração & dosagem , Ratos , Propriedades de Superfície , Distribuição Tecidual/efeitos dos fármacos
6.
J Control Release ; 333: 1-15, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33741385

RESUMO

Various thermosensitive liposome (TSL) formulations have been described to date and it is currently unclear which are optimal for solid tumor treatment. Sufficient circulation half-life is important and most liposomes obtain this by polyethylene glycol (PEG) surface modification. 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol (DPPG2) has been described as a promising alternative which increases TSL circulation half-life and facilitates rapid drug release under mild hyperthermia at 20-30 mol%. The present work describes an investigation of the DPPG2-TSL protein corona, blood cell interactions, complement activation in human plasma/blood and hypersensitivity reactions in rats. Furthermore, accelerated blood clearance (ABC) was investigated to obtain a complete assessment of DPPG2-TSL interactions with components of the blood and identify drivers for circulation half-life. A higher mol% DPPG2 increased Apolipoprotein E (ApoE) adsorption and decreased complement activation and granulocyte interaction in vitro. In contrast to PEG-TSL, DPPG2-TSL showed no ABC effect. In vivo hypersensitivity assessment by eicosanoid measurements, platelet and lymphocyte counting resembled the results of in vitro complement activation assays although here all DPPG2-TSL formulations induced hypersensitive responses upon i.v. administration. Prolonged circulation half-life of DPPG2-TSL may be ApoE-induced and the absent ABC effect demonstrates an advantage over PEG-TSL. Low complement activation in human plasma and blood for 20-30 mol% DPPG2-TSL presents a unique formulation attribute with the potential to strengthen clinical evaluation.


Assuntos
Hipertermia Induzida , Lipossomos , Animais , Doxorrubicina , Meia-Vida , Polietilenoglicóis , Ratos
7.
Opt Lett ; 46(1): 17-20, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33362002

RESUMO

Many optoelectronic devices embedded in a silicon photonic chip, like photodetectors, modulators, and attenuators, rely on waveguide doping for their operation. However, the doping level of a waveguide is not always reflecting in an equal amount of free carriers available for conduction because of the charges and trap energy states inevitably present at the Si/SiO2 interface. In a silicon-on-insulator technology with 1015cm-3p-doped native waveguides, this can lead to a complete depletion of the core from free carriers and to a consequently very high electrical resistance. This Letter experimentally quantifies this effect and shows how the amount of free carriers in a waveguide can be modified and restored to the original doping value with a proper control of the chip substrate potential. A similar capability is also demonstrated by means of a specific metal gate integrated above the waveguide that allows fine control of the conductance with high locality level. This paper highlights the linearity achievable in the conductance modulation that can be exploited in a number of possible applications.

8.
Mol Ther ; 29(2): 788-803, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33068779

RESUMO

The tropism of mesenchymal stem cells (MSCs) for tumors forms the basis for their use as delivery vehicles for the tumor-specific transport of therapeutic genes, such as the theranostic sodium iodide symporter (NIS). Hyperthermia is used as an adjuvant for various tumor therapies and has been proposed to enhance leukocyte recruitment. Here, we describe the enhanced recruitment of adoptively applied NIS-expressing MSCs to tumors in response to regional hyperthermia. Hyperthermia (41°C, 1 h) of human hepatocellular carcinoma cells (HuH7) led to transiently increased production of immunomodulatory factors. MSCs showed enhanced chemotaxis to supernatants derived from heat-treated cells in a 3D live-cell tracking assay and was validated in vivo in subcutaneous HuH7 mouse xenografts. Cytomegalovirus (CMV)-NIS-MSCs were applied 6-48 h after or 24-48 h before hyperthermia treatment. Using 123I-scintigraphy, thermo-stimulation (41°C, 1 h) 24 h after CMV-NIS-MSC injection resulted in a significantly increased uptake of 123I in heat-treated tumors compared with controls. Immunohistochemical staining and real-time PCR confirmed tumor-selective, temperature-dependent MSC migration. Therapeutic efficacy was significantly enhanced by combining CMV-NIS-MSC-mediated 131I therapy with regional hyperthermia. We demonstrate here for the first time that hyperthermia can significantly boost tumoral MSC recruitment, thereby significantly enhancing therapeutic efficacy of MSC-mediated NIS gene therapy.


Assuntos
Fibroblastos Associados a Câncer , Movimento Celular , Hipertermia Induzida , Células-Tronco Mesenquimais/metabolismo , Células Estromais/metabolismo , Animais , Movimento Celular/imunologia , Modelos Animais de Doenças , Humanos , Transplante de Células-Tronco Mesenquimais , Camundongos , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Theranostics ; 10(10): 4490-4506, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292510

RESUMO

Purpose: The tumor homing characteristics of mesenchymal stem cells (MSCs) make them attractive vehicles for the tumor-specific delivery of therapeutic agents, such as the sodium iodide symporter (NIS). NIS is a theranostic protein that allows non-invasive monitoring of the in vivo biodistribution of functional NIS expression by radioiodine imaging as well as the therapeutic application of 131I. To gain local and temporal control of transgene expression, and thereby improve tumor selectivity, we engineered MSCs to express the NIS gene under control of a heat-inducible HSP70B promoter (HSP70B-NIS-MSCs). Experimental Design: NIS induction in heat-treated HSP70B-NIS-MSCs was verified by 125I uptake assay, RT-PCR, Western blot and immunofluorescence staining. HSP70B-NIS-MSCs were then injected i.v. into mice carrying subcutaneous hepatocellular carcinoma HuH7 xenografts, and hyperthermia (1 h at 41°C) was locally applied to the tumor. 0 - 72 h later radioiodine uptake was assessed by 123I-scintigraphy. The most effective uptake regime was then selected for 131I therapy. Results: The HSP70B promoter showed low basal activity in vitro and was significantly induced in response to heat. In vivo, the highest tumoral iodine accumulation was seen 12 h after application of hyperthermia. HSP70B-NIS-MSC-mediated 131I therapy combined with hyperthermia resulted in a significantly reduced tumor growth with prolonged survival as compared to control groups. Conclusions: The heat-inducible HSP70B promoter allows hyperthermia-induced spatial and temporal control of MSC-mediated theranostic NIS gene radiotherapy with efficient tumor-selective and temperature-dependent accumulation of radioiodine in heat-treated tumors.


Assuntos
Carcinoma Hepatocelular/terapia , Terapia Genética , Hipertermia Induzida , Radioisótopos do Iodo/uso terapêutico , Neoplasias Hepáticas Experimentais/terapia , Células-Tronco Mesenquimais/citologia , Simportadores/genética , Animais , Linhagem Celular Tumoral , Feminino , Proteínas de Choque Térmico HSP70/genética , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA