Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20915, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38016976

RESUMO

Classical approaches to enhance auxeticity quite often involve exploring or designing newer architectures. In this work, simple geometrical features at the member level are engineered to exploit non-classical nonlinearities and improve the auxetic behaviour. The structural elements of the auxetic unit cell are here represented by thin strip-like beams, or thin-walled tubular beams. The resulting nonlinear stiffness enhances the auxeticity of the lattices, especially under large deformations. To quantify the influence of the proposed structural features on the resulting Poisson's ratio, we use here variational asymptotic method (VAM) and geometrically exact beam theory. The numerical examples reveal that 2D re-entrant type micro-structures made of thin strips exhibit an improvement in terms of auxetic behaviour under compression. For the auxetic unit cell with thin circular tubes as members, Brazier's effect associated with cross-sectional ovalisation improves the auxetic behaviour under tension; the enhancement is even more significant for the 3D re-entrant geometry. Thin strip-based auxetic unit cells were additively manufactured and tested under compression to verify the numerical observations. The experimentally measured values of the negative Poisson's ratio are in close agreement with the numerical results, revealing a 66% increase due to the nonlinearity. Simulation results showcase these alternative approaches to improve the auxetic behaviour through simple geometric engineering of the lattice ribs.

2.
ACS Nano ; 17(7): 6800-6810, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36988309

RESUMO

Electrospinning technique is well-known for the generation of different fibers. While it is a "simple" technique, it lies in the fact that the fibers are typically produced in the form of densely packed two-dimensional (2D) mats with limited thickness, shape, and porosity. The highly demanded three-dimensional (3D) fiber assemblies have been explored by time-consuming postprocessing and/or complex setup modifications. Here, we use a classic electrospinning setup to directly produce 3D fiber macrostructures only by modulating the spinning solution. Increasing solution conductivity modifies electrodynamic jet behavior and fiber assembling process; both are observed in situ using a high-speed camera. More viscous solutions render thicker fibers that own enhanced mechanical stiffness as examined by finite element analysis. We reveal the correlation between the universal solution parameters and the dimensionality of fiber assemblies, thereof, enlightening the design of more "3D spinnable" solutions that are compatible with any commercial electrospinning equipment. After a calcination step, ultralightweight ceramic fiber assemblies are generated. These inexpensive materials can clean up exceptionally large fractions of oil spillages and provide high-performance thermal insulation. This work would drive the development and scale-up production of next-generation 3D fiber materials for engineering, biomedical, and environmental applications.

3.
Sci Rep ; 12(1): 4020, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256721

RESUMO

Ethylene-Vinyl Acetate (EVA) is the most popular material for manufacturing mouthguards. However, EVA mouthguards are problematic, for example inconsistent thicknesses across the mouthguard. Additive manufacturing provides a promising solution to this problem, as it can manufacture mouthguards with a greater precision. This paper compares the energy dissipation of EVA, the current material used for mouthguards, to various designs of a 3D printed material, some of which contain air cells. Impact testing was carried out at three different strain rates. The Split-Hopkinson bar was used for medium and high strain rate tests, and an Instron test rig was used for low strain rate testing. The best performing design dissipated 25% more energy than EVA in the medium and high strain rate testing respectively while the low strain rate testing was inconclusive. This research has shown that additive manufacturing provides a viable method of manufacturing mouthguards. This opens up the opportunity for embedding electronics/sensors into additive manufactured mouthguards.


Assuntos
Protetores Bucais , Desenho de Equipamento , Teste de Materiais , Impressão Tridimensional
4.
Biophys J ; 114(6): 1433-1439, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29590600

RESUMO

Shock waves are used clinically for breaking kidney stones and treating musculoskeletal indications. The mechanisms by which shock waves interact with tissue are still not well understood. Here, ultra-high-speed imaging was used to visualize the deformation of individual cells embedded in a tissue-mimicking phantom when subject to shock-wave exposure from a clinical source. Three kidney epithelial cell lines were considered to represent normal healthy (human renal epithelial), cancer (CAKI-2), and virus-transformed (HK-2) cells. The experimental results showed that during the compressive phase of the shock waves, there was a small (<2%) decrease in the projected cell area, but during the tensile phase, there was a relatively large (∼10%) increase in the projected cell area. The experimental observations were captured by a numerical model with a constitutive material framework consisting of an equation of state for the volumetric response and hyper-viscoelasticity for the deviatoric response. To model the volumetric cell response, it was necessary to change from a higher bulk modulus during the compression to a lower bulk modulus during the tensile shock loading. It was discovered that cancer cells showed a smaller deformation but faster response to the shock-wave tensile phase compared to their noncancerous counterparts. Cell viability experiments, however, showed that cancer cells suffered more damage than other cell types. These data suggest that the cell response to shock waves is specific to the type of cell and waveforms that could be tailored to an application. For example, the model predicts that a shock wave with a tensile stress of 4.59 MPa would increase cell membrane permeability for cancer cells with minimal impact on normal cells.


Assuntos
Tratamento por Ondas de Choque Extracorpóreas , Modelos Biológicos , Neoplasias/patologia , Neoplasias/terapia , Análise de Célula Única , Estresse Mecânico
5.
Exp Eye Res ; 168: 19-27, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29288023

RESUMO

Experimental protocols have been developed to measure the spatial variation of the mechanical strains induced in the lens capsule during ex vivo lens stretching. The paper describes the application of these protocols to porcine lenses. The deformations and mechanical strains developed in the anterior capsule during each experiment were determined using full field digital image correlation techniques, by means of a speckle pattern applied to the lens surface. Several speckling techniques and illumination methods were assessed before a suitable combination was found. Additional data on the cross section shape of the anterior lens surface were obtained by Scheimpflug photography, to provide a means of correcting for lens curvature effects in the determination of the strains developed in the plane of the capsule. The capsule strains in porcine lenses exhibit non-linear behaviour, and hysteresis during loading and unloading. Peripheral regions experience higher magnitude strains than regions near the lens pole. The paper demonstrates the successful application of a procedure to make direct measurements of capsule strains simultaneously with ex vivo radial lens stretching. This experimental technique is applicable to future investigations on the mechanical characteristics of human lenses.


Assuntos
Acomodação Ocular/fisiologia , Cápsula Anterior do Cristalino/fisiologia , Cápsula do Cristalino/fisiologia , Animais , Comprimento Axial do Olho/fisiologia , Modelos Animais , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA