Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 111(5): 987-995, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444900

RESUMO

Integration of native bone into orthopedic devices is a key factor in long-term implant success. The material-tissue interface is generally accepted to consist of a hydroxyapatite layer so bioactive materials that can spontaneously generate this hydroxyapatite layer after implantation may improve patient outcomes. Per the ISO 22317:2014 standard, "Implants for surgery - In vitro evaluation for apatite-forming ability of implant materials," bioactivity performance statements can be assessed by soaking the material in simulated body fluid (SBF) and evaluating the surface for the formation of a hydroxyapatite layer; however, variations in test methods may alter hydroxyapatite formation and result in false-positive assessments. The goal of this study was to identify the effect of SBF formulation on bioactivity assessment. Bioglass® (45S5 and S53P4) and non-bioactive Ti-6Al-4V were exposed to SBF formulations varying in calcium ion and phosphate concentrations as well as supporting ion concentrations. Scanning electron microscopy and X-ray powder diffraction evaluation of the resulting hydroxyapatite layers revealed that SBF enriched with double or quadruple the calcium and phosphate ion concentrations increased hydroxyapatite crystal size and quantity compared to the standard formulation and can induce hydroxyapatite crystallization on surfaces traditionally considered non-bioactive. Altering concentrations of other ions, for example, bicarbonate, changed hydroxyapatite induction time, quantity, and morphology. For studies evaluating the apatite-forming ability of a material to support bioactivity performance statements, test method parameters must be adequately described and controlled. It is unclear if apatite formation after exposure to any of the SBF formulations is representative of an in vivo biological response. The ISO 23317 standard test method should be further developed to provide additional guidance on apatite characterization and interpretation of the results.


Assuntos
Apatitas , Líquidos Corporais , Humanos , Apatitas/química , Cálcio/química , Propriedades de Superfície , Durapatita/química , Líquidos Corporais/química , Microscopia Eletrônica de Varredura , Difração de Raios X
2.
J Appl Toxicol ; 40(7): 918-930, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32080871

RESUMO

Ultrasmall superparamagnetic iron oxide nanoparticles (USPION) possess reactive surfaces, are metabolized and exhibit unique magnetic properties. These properties are desirable for designing novel theranostic biomedical products; however, toxicity mechanisms of USPION are not completely elucidated. The goal of this study was to investigate cell interactions (uptake and cytotoxicity) of USPION using human coronary artery endothelial cells as a vascular cell model. Polyvinylpirrolidone-coated USPION were characterized: average diameter 17 nm (transmission electron microscopy [TEM]), average hydrodynamic diameter 44 nm (dynamic light scattering) and zeta potential -38.75 mV. Cells were exposed to 0 (control), 25, 50, 100 or 200 µg/mL USPION. Concentration- and time-dependent cytotoxicity were observed after 3-6 hours through 24 hours of exposure using Alamar Blue and Real-Time Cell Electronic Sensing assays. Cell uptake was evaluated by imaging using live-dead confocal microscopy, actin and nuclear fluorescent staining, and TEM. Phase-contrast, confocal microscopy, and TEM imaging showed significant USPION internalization as early as 3 hours after exposure to 25 µg/mL. TEM imaging demonstrated particle internalization in secondary lysosomes with perinuclear localization. Three orthogonal assays were conducted to assess apoptosis. TUNEL staining demonstrated a marked increase in fragmented DNA, a response pathognomonic of apoptosis, after a 4-hour exposure. Cells subjected to agarose gel electrophoresis exhibited degraded DNA 3 hours after exposure. Caspase-3/7 activity increased after a 3-hour exposure. USPION uptake resulted in cytotoxicity involving apoptosis and these results contribute to further mechanistic understanding of the USPION toxicity in vitro in cardiovascular endothelial cells.


Assuntos
Apoptose/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Citotoxinas/efeitos adversos , Células Endoteliais/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Humanos
3.
Int J Pharm ; 550(1-2): 229-239, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30125649

RESUMO

Measurement of particle size and size distribution of complex drug products exhibiting complex rheological behaviors can be challenging as these properties may be beyond the theoretical assumptions of the measurement technique. Herein cyclosporine (CsA) ophthalmic emulsion was selected as a model complex system, and an in-depth assessment of particle size was performed using five fundamentally different particle sizing techniques, including dynamic light scattering (DLS), laser diffraction (LD), nanoparticle tracking analysis (NTA), cryogenic transmission electron microscopy (Cryo-TEM) and 2-dimensional diffusion ordered spectroscopy nuclear magnetic resonance (2D DOSY-NMR). The effect of various viscosity modifying and stabilizing excipients in the emulsions was assessed using four types of CsA formulations, i.e., 1) no viscosity modifying excipients, 2) carbomer copolymer type A (CCA), 3) Carbopol 1342, or 4) hydroxypropyl methyl cellulose (HMPC). In general, the variability of reported particle size increased, and is not as accurate, for emulsions dispersed in a non-Newtonian fluid and at higher emulsion concentrations. This effect was reduced in part by diluting the samples to lower volume fraction and a more Newtonian regime. To address the concern that sample dilution prior to measurement may induce physical instability in the emulsions, NTA was used to monitor average size at dilutions of up to 1:50,000. The size was found to remain constant and independent of the presence or type of stabilizer used. Cryo-TEM further confirmed that dilution did not alter particle size or morphology. Of the five evaluated techniques, Cryo-TEM and 2D DOSY NMR did not require dilution for measurement. The overestimate in DLS size measurements for certain CsA formulations was attributed to complex dispersant rheological behavior, particle-particle interactions, multiple light scattering events, and/or scattering interference from the polymers, which can be overcome by either testing under dilutions or by selecting one of the techniques less impacted by the interference of polymer.


Assuntos
Ciclosporina/química , Soluções Oftálmicas/química , Emulsões , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Reologia
4.
Toxicol In Vitro ; 44: 248-255, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28739488

RESUMO

Porous PMMA is a versatile biomaterial with good biocompatibility but high susceptibility to bacterial colonization, which we mitigated by utilizing immobilized antimicrobial silver nanoparticles (AgNPs). A uniform porous thin film was deposited onto silicon wafers by simultaneously ablating PMMA and silver (Ag) using pulsed laser deposition (PLD) optimized for minimal human cell toxicity and antibacterial efficacy. PMMA without Ag became heavily colonized by E. coli in simulated dynamic conditions, while Ag-containing samples prevented all colonization. ICP-MS analysis demonstrated that the amount of leached Ag after 24h under simulated in vivo conditions (with serum media at 37°C and 5% CO2) increased in proportion to film thickness (and total silver content). 10,000, 14,000, and 20,000 laser pulse-deposited films released 0.76, 1.05, and 1.67µg/mL Ag, respectively, after 24h. Human bone marrow stromal cells (hBMSCs) grown directly on 10,000-pulse films (0.76µg/mL Ag released) for 24-h exhibited no cytotoxicity. Exposure to the remaining films produced cytotoxicity, necrosis, and apoptosis detected using flow cytometry. Examining both leachates and direct cell contact allowed us to develop an in vitro cytotoxicity test method and optimize a novel device material and coating to be nontoxic and bactericidal during both potential initial implantation and external use.


Assuntos
Antibacterianos/administração & dosagem , Materiais Biocompatíveis/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Polimetil Metacrilato/administração & dosagem , Prata/administração & dosagem , Antibacterianos/química , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Necrose/induzido quimicamente , Polimetil Metacrilato/química , Prata/química
5.
J Biomed Nanotechnol ; 11(12): 2275-85, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26510320

RESUMO

The surface topographies of nanoporous anodic aluminum oxide (AAO) and titanium dioxide (TiO2) membranes have been shown to modulate cell response in orthopedic and skin wound repair applications. In this study, we: (1) demonstrate an improved atomic layer deposition (ALD) method for coating the porous structures of 20, 100, and 200 nm pore diameter AAO with nanometer-thick layers of TiO2 and (2) evaluate the effects of uncoated AAO and TiO2-coated AAO on cellular responses. The TiO2 coatings were deposited on the AAO membranes without compromising the openings of the nanoscale pores. The 20 nm TiO2-coated membranes showed the highest amount of initial protein adsorption via the micro bicinchoninic acid (micro-BCA) assay; all of the TiO2-coated membranes showed slightly higher protein adsorption than the uncoated control materials. Cell viability, proliferation, and inflammatory responses on the TiO2-coated AAO membranes showed no adverse outcomes. For all of the tested surfaces, normal increases in proliferation (DNA content) of L929 fibroblasts were observed over from 4 hours to 72 hours. No increases in TNF-alpha production were seen in RAW 264.7 macrophages grown on TiO2-coated AAO membranes compared to uncoated AAO membranes and tissue culture polystyrene (TCPS) surfaces. Both uncoated AAO membranes and TiO2-coated AAO membranes showed no significant effects on cell growth and inflammatory responses. The results suggest that TiO2-coated AAO may serve as a reasonable prototype material for the development of nanostructured wound repair devices and orthopedic implants.


Assuntos
Óxido de Alumínio/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Nanoestruturas , Titânio/química , Adsorção , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Porosidade , Fator de Necrose Tumoral alfa/biossíntese
6.
Adv Healthc Mater ; 4(5): 739-47, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25522214

RESUMO

A reproducible method is needed to fabricate 3D scaffold constructs that results in periodic and uniform structures with precise control at sub-micrometer and micrometer length scales. In this study, fabrication of scaffolds by two-photon polymerization (2PP) of a biodegradable urethane and acrylate-based photoelastomer is demonstrated. This material supports 2PP processing with sub-micrometer spatial resolution. The high photoreactivity of the biophotoelastomer permits 2PP processing at a scanning speed of 1000 mm s(-1), facilitating rapid fabrication of relatively large structures (>5 mm(3)). These structures are custom printed for in vitro assay screening in 96-well plates and are sufficiently flexible to enable facile handling and transplantation. These results indicate that stable scaffolds with porosities of greater than 60% can be produced using 2PP. Human bone marrow stromal cells grown on 3D scaffolds exhibit increased growth and proliferation compared to smooth 2D scaffold controls. 3D scaffolds adsorb larger amounts of protein than smooth 2D scaffolds due to their larger surface area; the scaffolds also allow cells to attach in multiple planes and to completely infiltrate the porous scaffolds. The flexible photoelastomer material is biocompatible in vitro and is associated with facile handling, making it a viable candidate for further study of complex 3D-printed scaffolds.


Assuntos
Células-Tronco Mesenquimais/citologia , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Fenômenos Biomecânicos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Elasticidade , Elastômeros/química , Elastômeros/farmacologia , Humanos , Porosidade
7.
Toxicol In Vitro ; 28(6): 1144-52, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24878115

RESUMO

Nanostructured ZnO films have potential use as coatings on medical devices and food packaging due to their antimicrobial and UV-protection properties. However, their influence on mammalian cells during clinical use is not fully understood. This study investigated the potential cytotoxicity of ZnO thin films in RAW 264.7 macrophages. ZnO thin films (∼96nm thick with a 50nm grain) were deposited onto silicon wafers using pulsed laser deposition. Cells grown directly on ZnO thin film coatings exhibited less toxicity than cells exposed to extracts of the coatings. Cells on ZnO thin films exhibited a 43% and 68% decrease in cell viability using the MTT and 7-AAD/Annexin V flow cytometry assays, respectively, after a 24-h exposure as compared to controls. Undiluted 100% 24- and 48-h extracts decreased viability by 89%, increased cell death by LDH release to 76% 24h after treatment, and increased ROS after 5-24h of exposure. In contrast, no cytotoxicity or ROS were observed for 25% and 50% extracts, indicating a tolerable concentration. Roughly 24 and 34µg/m(2) Zn leached off the surfaces after 24 and 48h of incubation, respectively. ZnO coatings may produce gradual ion release which becomes toxic after a certain level and should be evaluated using both direct exposure and extraction methods.


Assuntos
Nanoestruturas/toxicidade , Óxido de Zinco/toxicidade , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Nanoestruturas/química , Necrose , Óxido de Zinco/química
8.
Biomatter ; 3(3)2013.
Artigo em Inglês | MEDLINE | ID: mdl-23881040

RESUMO

Zinc oxide (ZnO) is a widely used commercial material that is finding use in wound healing applications due to its antimicrobial properties. Our study demonstrates a novel approach for coating ZnO with precise thickness control onto 20 nm and 100 nm pore diameter anodized aluminum oxide using atomic layer deposition (ALD). ZnO was deposited throughout the nanoporous structure of the anodized aluminum oxide membranes. An 8 nm-thick coating of ZnO, previously noted to have antimicrobial properties, was cytotoxic to cultured macrophages. After 48 h, ZnO-coated 20 nm and 100 nm pore anodized aluminum oxide significantly decreased cell viability by ≈65% and 54%, respectively, compared with cells grown on uncoated anodized aluminum oxide membranes and cells grown on tissue culture plates. Pore diameter (20-200 nm) did not influence cell viability.


Assuntos
Óxido de Alumínio/química , Macrófagos/efeitos dos fármacos , Óxido de Zinco/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/toxicidade , Relação Dose-Resposta a Droga , Humanos , Teste de Materiais , Membranas Artificiais , Microscopia Eletrônica de Varredura , Nanoestruturas/química , Nanoestruturas/toxicidade , Propriedades de Superfície , Óxido de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA