Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Sci Rep ; 14(1): 15145, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956134

RESUMO

Hepatitis C virus (HCV) is a plus-stranded RNA virus that often chronically infects liver hepatocytes and causes liver cirrhosis and cancer. These viruses replicate their genomes employing error-prone replicases. Thereby, they routinely generate a large 'cloud' of RNA genomes (quasispecies) which-by trial and error-comprehensively explore the sequence space available for functional RNA genomes that maintain the ability for efficient replication and immune escape. In this context, it is important to identify which RNA secondary structures in the sequence space of the HCV genome are conserved, likely due to functional requirements. Here, we provide the first genome-wide multiple sequence alignment (MSA) with the prediction of RNA secondary structures throughout all representative full-length HCV genomes. We selected 57 representative genomes by clustering all complete HCV genomes from the BV-BRC database based on k-mer distributions and dimension reduction and adding RefSeq sequences. We include annotations of previously recognized features for easy comparison to other studies. Our results indicate that mainly the core coding region, the C-terminal NS5A region, and the NS5B region contain secondary structure elements that are conserved beyond coding sequence requirements, indicating functionality on the RNA level. In contrast, the genome regions in between contain less highly conserved structures. The results provide a complete description of all conserved RNA secondary structures and make clear that functionally important RNA secondary structures are present in certain HCV genome regions but are largely absent from other regions. Full-genome alignments of all branches of Hepacivirus C are provided in the supplement.


Assuntos
Sequência Conservada , Genoma Viral , Hepacivirus , Conformação de Ácido Nucleico , RNA Viral , Hepacivirus/genética , RNA Viral/genética , RNA Viral/química , Humanos , Alinhamento de Sequência , Hepatite C/virologia , Hepatite C/genética
2.
Protein Sci ; 33(3): e4844, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009704

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) establish the genetic code. Each aaRS covalently links a given canonical amino acid to a cognate set of tRNA isoacceptors. Glycyl tRNA aminoacylation is unusual in that it is catalyzed by different aaRSs in different lineages of the Tree of Life. We have investigated the phylogenetic distribution and evolutionary history of bacterial glycyl tRNA synthetase (bacGlyRS). This enzyme is found in early diverging bacterial phyla such as Firmicutes, Acidobacteria, and Proteobacteria, but not in archaea or eukarya. We observe relationships between each of six domains of bacGlyRS and six domains of four different RNA-modifying proteins. Component domains of bacGlyRS show common ancestry with (i) the catalytic domain of class II tRNA synthetases; (ii) the HD domain of the bacterial RNase Y; (iii) the body and tail domains of the archaeal CCA-adding enzyme; (iv) the anti-codon binding domain of the arginyl tRNA synthetase; and (v) a previously unrecognized domain that we call ATL (Ancient tRNA latch). The ATL domain has been found thus far only in bacGlyRS and in the universal alanyl tRNA synthetase (uniAlaRS). Further, the catalytic domain of bacGlyRS is more closely related to the catalytic domain of uniAlaRS than to any other aminoacyl tRNA synthetase. The combined results suggest that the ATL and catalytic domains of these two enzymes are ancestral to bacGlyRS and uniAlaRS, which emerged from common protein ancestors by bricolage, stepwise accumulation of protein domains, before the last universal common ancestor of life.

3.
Nucleic Acids Res ; 51(D1): D509-D516, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36305870

RESUMO

Recent advances in Cryo-EM led to a surge of ribosome structures deposited over the past years, including structures from different species, conformational states, or bound with different ligands. Yet, multiple conflicts of nomenclature make the identification and comparison of structures and ortholog components challenging. We present RiboXYZ (available at https://ribosome.xyz), a database that provides organized access to ribosome structures, with several tools for visualisation and study. The database is up-to-date with the Protein Data Bank (PDB) but provides a standardized nomenclature that allows for searching and comparing ribosomal components (proteins, RNA, ligands) across all the available structures. In addition to structured and simplified access to the data, the application has several specialized visualization tools, including the identification and prediction of ligand binding sites, and 3D superimposition of ribosomal components. Overall, RiboXYZ provides a useful toolkit that complements the PDB database, by implementing the current conventions and providing a set of auxiliary tools that have been developed explicitly for analyzing ribosome structures. This toolkit can be easily accessed by both experts and non-experts in structural biology so that they can search, visualize and compare structures, with various potential applications in molecular biology, evolution, and biochemistry.


Assuntos
Bases de Dados Factuais , Ribossomos , Sítios de Ligação , Biologia Molecular , Proteínas/química , Ribossomos/química , RNA/química
4.
Proc Natl Acad Sci U S A ; 119(52): e2207897119, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36534803

RESUMO

Mechanisms of emergence and divergence of protein folds pose central questions in biological sciences. Incremental mutation and stepwise adaptation explain relationships between topologically similar protein folds. However, the universe of folds is diverse and riotous, suggesting more potent and creative forces are at play. Sequence and structure similarity are observed between distinct folds, indicating that proteins with distinct folds may share common ancestry. We found evidence of common ancestry between three distinct ß-barrel folds: Scr kinase family homology (SH3), oligonucleotide/oligosaccharide-binding (OB), and cradle loop barrel (CLB). The data suggest a mechanism of fold evolution that interconverts SH3, OB, and CLB. This mechanism, which we call creative destruction, can be generalized to explain many examples of fold evolution including circular permutation. In creative destruction, an open reading frame duplicates or otherwise merges with another to produce a fused polypeptide. A merger forces two ancestral domains into a new sequence and spatial context. The fused polypeptide can explore folding landscapes that are inaccessible to either of the independent ancestral domains. However, the folding landscapes of the fused polypeptide are not fully independent of those of the ancestral domains. Creative destruction is thus partially conservative; a daughter fold inherits some motifs from ancestral folds. After merger and refolding, adaptive processes such as mutation and loss of extraneous segments optimize the new daughter fold. This model has application in disease states characterized by genetic instability. Fused proteins observed in cancer cells are likely to experience remodeled folding landscapes and realize altered folds, conferring new or altered functions.


Assuntos
Dobramento de Proteína , Proteínas , Proteínas/química , Oligonucleotídeos/metabolismo , Fenômenos Biofísicos , Mutação
5.
Nucleic Acids Res ; 50(18): 10717-10732, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36200812

RESUMO

The ribosomal core is universally conserved across the tree of life. However, eukaryotic ribosomes contain diverse rRNA expansion segments (ESs) on their surfaces. Sites of ES insertions are predicted from sites of insertion of micro-ESs in archaea. Expansion segment 7 (ES7) is one of the most diverse regions of the ribosome, emanating from a short stem loop and ranging to over 750 nucleotides in mammals. We present secondary and full-atom 3D structures of ES7 from species spanning eukaryotic diversity. Our results are based on experimental 3D structures, the accretion model of ribosomal evolution, phylogenetic relationships, multiple sequence alignments, RNA folding algorithms and 3D modeling by RNAComposer. ES7 contains a distinct motif, the 'ES7 Signature Fold', which is generally invariant in 2D topology and 3D structure in all eukaryotic ribosomes. We establish a model in which ES7 developed over evolution through a series of elementary and recursive growth events. The data are sufficient to support an atomic-level accretion path for rRNA growth. The non-monophyletic distribution of some ES7 features across the phylogeny suggests acquisition via convergent processes. And finally, illustrating the power of our approach, we constructed the 2D and 3D structure of the entire LSU rRNA of Mus musculus.


Assuntos
Eucariotos , RNA Ribossômico , Animais , Eucariotos/genética , Mamíferos/genética , Camundongos , Conformação de Ácido Nucleico , Nucleotídeos/análise , Filogenia , RNA Ribossômico/química , Ribossomos/química , Ribossomos/genética
6.
Plant Commun ; 3(5): 100342, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35643637

RESUMO

Protein synthesis in crop plants contributes to the balance of food and fuel on our planet, which influences human metabolic activity and lifespan. Protein synthesis can be regulated with respect to changing environmental cues via the deposition of chemical modifications into rRNA. Here, we present the structure of a plant ribosome from tomato and a quantitative mass spectrometry analysis of its rRNAs. The study reveals fine features of the ribosomal proteins and 71 plant-specific rRNA modifications, and it re-annotates 30 rRNA residues in the available sequence. At the protein level, isoAsp is found in position 137 of uS11, and a zinc finger previously believed to be universal is missing from eL34, suggesting a lower effect of zinc deficiency on protein synthesis in plants. At the rRNA level, the plant ribosome differs markedly from its human counterpart with respect to the spatial distribution of modifications. Thus, it represents an additional layer of gene expression regulation, highlighting the molecular signature of a plant ribosome. The results provide a reference model of a plant ribosome for structural studies and an accurate marker for molecular ecology.


Assuntos
RNA Ribossômico , Proteínas Ribossômicas , Ribossomos , Solanum lycopersicum , Microscopia Crioeletrônica , Solanum lycopersicum/genética , Biossíntese de Proteínas , RNA Ribossômico/química , Proteínas Ribossômicas/química , Ribossomos/química , Ribossomos/ultraestrutura
7.
J Mol Evol ; 90(2): 166-175, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246710

RESUMO

Evolution works by adaptation and exaptation. At an organismal level, exaptation and adaptation are seen in the formation of organelles and the advent of multicellularity. At the sub-organismal level, molecular systems such as proteins and RNAs readily undergo adaptation and exaptation. Here we suggest that the concepts of adaptation and exaptation are universal, synergistic, and recursive and apply to small molecules such as metabolites, cofactors, and the building blocks of extant polymers. For example, adenosine has been extensively adapted and exapted throughout biological evolution. Chemical variants of adenosine that are products of adaptation include 2' deoxyadenosine in DNA and a wide array of modified forms in mRNAs, tRNAs, rRNAs, and viral RNAs. Adenosine and its variants have been extensively exapted for various functions, including informational polymers (RNA, DNA), energy storage (ATP), metabolism (e.g., coenzyme A), and signaling (cyclic AMP). According to Gould, Vrba, and Darwin, exaptation imposes a general constraint on interpretation of history and origins; because of exaptation, extant function should not be used to explain evolutionary history. While this notion is accepted in evolutionary biology, it can also guide the study of the chemical origins of life. We propose that (i) evolutionary theory is broadly applicable from the dawn of life to the present time from molecules to organisms, (ii) exaptation and adaptation were important and simultaneous processes, and (iii) robust origin of life models can be constructed without conflating extant utility with historical basis of origins.


Assuntos
Adaptação Fisiológica , Plumas , Aclimatação , Adaptação Fisiológica/genética , Animais , Evolução Biológica
8.
Nucleic Acids Res ; 50(D1): D11-D19, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34850134

RESUMO

The European Bioinformatics Institute (EMBL-EBI) maintains a comprehensive range of freely available and up-to-date molecular data resources, which includes over 40 resources covering every major data type in the life sciences. This year's service update for EMBL-EBI includes new resources, PGS Catalog and AlphaFold DB, and updates on existing resources, including the COVID-19 Data Platform, trRosetta and RoseTTAfold models introduced in Pfam and InterPro, and the launch of Genome Integrations with Function and Sequence by UniProt and Ensembl. Furthermore, we highlight projects through which EMBL-EBI has contributed to the development of community-driven data standards and guidelines, including the Recommended Metadata for Biological Images (REMBI), and the BioModels Reproducibility Scorecard. Training is one of EMBL-EBI's core missions and a key component of the provision of bioinformatics services to users: this year's update includes many of the improvements that have been developed to EMBL-EBI's online training offering.


Assuntos
Biologia Computacional/educação , Biologia Computacional/métodos , Bases de Dados Factuais , Academias e Institutos , Inteligência Artificial , COVID-19 , Bases de Dados Factuais/economia , Bases de Dados Factuais/estatística & dados numéricos , Bases de Dados de Produtos Farmacêuticos , Bases de Dados de Proteínas , Europa (Continente) , Genoma Humano , Humanos , Armazenamento e Recuperação da Informação , RNA não Traduzido/genética , SARS-CoV-2/genética
9.
PLoS Comput Biol ; 17(10): e1009541, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34714829

RESUMO

We have developed the program TwinCons, to detect noisy signals of deep ancestry of proteins or nucleic acids. As input, the program uses a composite alignment containing pre-defined groups, and mathematically determines a 'cost' of transforming one group to the other at each position of the alignment. The output distinguishes conserved, variable and signature positions. A signature is conserved within groups but differs between groups. The method automatically detects continuous characteristic stretches (segments) within alignments. TwinCons provides a convenient representation of conserved, variable and signature positions as a single score, enabling the structural mapping and visualization of these characteristics. Structure is more conserved than sequence. TwinCons highlights alternative sequences of conserved structures. Using TwinCons, we detected highly similar segments between proteins from the translation and transcription systems. TwinCons detects conserved residues within regions of high functional importance for the ribosomal RNA (rRNA) and demonstrates that signatures are not confined to specific regions but are distributed across the rRNA structure. The ability to evaluate both nucleic acid and protein alignments allows TwinCons to be used in combined sequence and structural analysis of signatures and conservation in rRNA and in ribosomal proteins (rProteins). TwinCons detects a strong sequence conservation signal between bacterial and archaeal rProteins related by circular permutation. This conserved sequence is structurally colocalized with conserved rRNA, indicated by TwinCons scores of rRNA alignments of bacterial and archaeal groups. This combined analysis revealed deep co-evolution of rRNA and rProtein buried within the deepest branching points in the tree of life.


Assuntos
Sequência Conservada/genética , Aprendizado Profundo , RNA Ribossômico/genética , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Evolução Molecular , Metagenômica
10.
Mol Biol Evol ; 38(11): 5134-5143, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34383917

RESUMO

SH3 and OB are the simplest, oldest, and most common protein domains within the translation system. SH3 and OB domains are ß-barrels that are structurally similar but are topologically distinct. To transform an OB domain to a SH3 domain, ß-strands must be permuted in a multistep and evolutionarily implausible mechanism. Here, we explored relationships between SH3 and OB domains of ribosomal proteins, initiation, and elongation factors using a combined sequence- and structure-based approach. We detect a common core of SH3 and OB domains, as a region of significant structure and sequence similarity. The common core contains four ß-strands and a loop, but omits the fifth ß-strand, which is variable and is absent from some OB and SH3 domain proteins. The structure of the common core immediately suggests a simple permutation mechanism for interconversion between SH3 and OB domains, which appear to share an ancestor. The OB domain was formed by duplication and adaptation of the SH3 domain core, or vice versa, in a simple and probable transformation. By employing the folding algorithm AlphaFold2, we demonstrated that an ancestral reconstruction of a permuted SH3 sequence folds into an OB structure, and an ancestral reconstruction of a permuted OB sequence folds into a SH3 structure. The tandem SH3 and OB domains in the universal ribosomal protein uL2 share a common ancestor, suggesting that the divergence of these two domains occurred before the last universal common ancestor.


Assuntos
Proteínas Ribossômicas , Domínios de Homologia de src , Sequência de Aminoácidos , Modelos Moleculares , Proteínas Ribossômicas/genética , Alinhamento de Sequência , Domínios de Homologia de src/genética
11.
Nat Commun ; 12(1): 3494, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108470

RESUMO

Non-coding RNAs (ncRNA) are essential for all life, and their functions often depend on their secondary (2D) and tertiary structure. Despite the abundance of software for the visualisation of ncRNAs, few automatically generate consistent and recognisable 2D layouts, which makes it challenging for users to construct, compare and analyse structures. Here, we present R2DT, a method for predicting and visualising a wide range of RNA structures in standardised layouts. R2DT is based on a library of 3,647 templates representing the majority of known structured RNAs. R2DT has been applied to ncRNA sequences from the RNAcentral database and produced >13 million diagrams, creating the world's largest RNA 2D structure dataset. The software is amenable to community expansion, and is freely available at https://github.com/rnacentral/R2DT and a web server is found at https://rnacentral.org/r2dt .


Assuntos
Biologia Computacional/métodos , RNA/química , Bases de Dados de Ácidos Nucleicos , Conformação de Ácido Nucleico , RNA não Traduzido/química , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Software
12.
Nucleic Acids Res ; 49(W1): W578-W588, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33999189

RESUMO

ProteoVision is a web server designed to explore protein structure and evolution through simultaneous visualization of multiple sequence alignments, topology diagrams and 3D structures. Starting with a multiple sequence alignment, ProteoVision computes conservation scores and a variety of physicochemical properties and simultaneously maps and visualizes alignments and other data on multiple levels of representation. The web server calculates and displays frequencies of amino acids. ProteoVision is optimized for ribosomal proteins but is applicable to analysis of any protein. ProteoVision handles internally generated and user uploaded alignments and connects them with a selected structure, found in the PDB or uploaded by the user. It can generate de novo topology diagrams from three-dimensional structures. All displayed data is interactive and can be saved in various formats as publication quality images or external datasets or PyMol Scripts. ProteoVision enables detailed study of protein fragments defined by Evolutionary Classification of protein Domains (ECOD) classification. ProteoVision is available at http://proteovision.chemistry.gatech.edu/.


Assuntos
Proteínas Ribossômicas/química , Software , Acetolactato Sintase/química , Proteínas de Bactérias/química , Internet , Modelos Moleculares , Fator Tu de Elongação de Peptídeos/química , Conformação Proteica , Alinhamento de Sequência
13.
Membranes (Basel) ; 11(2)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572584

RESUMO

The process of non-reagent adjustment of the pH of a NaCl solution (0.5 g/L) of different acidity was investigated by the method of bipolar electrodialysis on a device operating according to the K-system (concentration). The experiments were carried out in the range pH = 2.0-12.0 with monopolar cation-exchange MK-40 (for alkaline solutions) or anion-exchange MA-40 (for acidic solutions) and bipolar MB-2 membranes. The regularities of the change in the pH of the solution on the current density, process productivity and energy consumption for the neutralization process have been investigated. Revealed: with different productivity of the apparatus (Q = 0.5-1.5 m3/h), in the range of pH 3.0-11.0, with an increase in the current density, a neutral pH value is achieved. It has been shown that at pH above 11.0 and below 3.0, even at high current densities (i > 20 A/m2), its value cannot be changed. This is due to the neutralization of the H+ or OH- ions generated by the bipolar membrane by water ions, which are formed as a result of the dissociation of water molecules at the border of the monopolar membrane and the solution under conditions when the value of current exceeds the limiting value.

14.
RNA ; 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452229

RESUMO

None.

15.
Brief Bioinform ; 22(2): 642-663, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33147627

RESUMO

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel virus of the family Coronaviridae. The virus causes the infectious disease COVID-19. The biology of coronaviruses has been studied for many years. However, bioinformatics tools designed explicitly for SARS-CoV-2 have only recently been developed as a rapid reaction to the need for fast detection, understanding and treatment of COVID-19. To control the ongoing COVID-19 pandemic, it is of utmost importance to get insight into the evolution and pathogenesis of the virus. In this review, we cover bioinformatics workflows and tools for the routine detection of SARS-CoV-2 infection, the reliable analysis of sequencing data, the tracking of the COVID-19 pandemic and evaluation of containment measures, the study of coronavirus evolution, the discovery of potential drug targets and development of therapeutic strategies. For each tool, we briefly describe its use case and how it advances research specifically for SARS-CoV-2. All tools are free to use and available online, either through web applications or public code repositories. Contact:evbc@unj-jena.de.


Assuntos
COVID-19/prevenção & controle , Biologia Computacional , SARS-CoV-2/isolamento & purificação , Pesquisa Biomédica , COVID-19/epidemiologia , COVID-19/virologia , Genoma Viral , Humanos , Pandemias , SARS-CoV-2/genética
16.
Nucleic Acids Res ; 49(1): 79-89, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33300028

RESUMO

The helical structures of DNA and RNA were originally revealed by experimental data. Likewise, the development of programs for modeling these natural polymers was guided by known structures. These nucleic acid polymers represent only two members of a potentially vast class of polymers with similar structural features, but that differ from DNA and RNA in the backbone or nucleobases. Xeno nucleic acids (XNAs) incorporate alternative backbones that affect the conformational, chemical, and thermodynamic properties of XNAs. Given the vast chemical space of possible XNAs, computational modeling of alternative nucleic acids can accelerate the search for plausible nucleic acid analogs and guide their rational design. Additionally, a tool for the modeling of nucleic acids could help reveal what nucleic acid polymers may have existed before RNA in the early evolution of life. To aid the development of novel XNA polymers and the search for possible pre-RNA candidates, this article presents the proto-Nucleic Acid Builder (https://github.com/GT-NucleicAcids/pnab), an open-source program for modeling nucleic acid analogs with alternative backbones and nucleobases. The torsion-driven conformation search procedure implemented here predicts structures with good accuracy compared to experimental structures, and correctly demonstrates the correlation between the helical structure and the backbone conformation in DNA and RNA.


Assuntos
Algoritmos , Modelos Químicos , Ácidos Nucleicos/química , Software , DNA/química , Desoxirribose/química , Estrutura Molecular , Conformação de Ácido Nucleico , RNA/química
17.
Nucleic Acids Res ; 49(D1): D192-D200, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33211869

RESUMO

Rfam is a database of RNA families where each of the 3444 families is represented by a multiple sequence alignment of known RNA sequences and a covariance model that can be used to search for additional members of the family. Recent developments have involved expert collaborations to improve the quality and coverage of Rfam data, focusing on microRNAs, viral and bacterial RNAs. We have completed the first phase of synchronising microRNA families in Rfam and miRBase, creating 356 new Rfam families and updating 40. We established a procedure for comprehensive annotation of viral RNA families starting with Flavivirus and Coronaviridae RNAs. We have also increased the coverage of bacterial and metagenome-based RNA families from the ZWD database. These developments have enabled a significant growth of the database, with the addition of 759 new families in Rfam 14. To facilitate further community contribution to Rfam, expert users are now able to build and submit new families using the newly developed Rfam Cloud family curation system. New Rfam website features include a new sequence similarity search powered by RNAcentral, as well as search and visualisation of families with pseudoknots. Rfam is freely available at https://rfam.org.


Assuntos
Bases de Dados de Ácidos Nucleicos , Metagenoma , MicroRNAs/genética , RNA Bacteriano/genética , RNA não Traduzido/genética , RNA Viral/genética , Bactérias/genética , Bactérias/metabolismo , Pareamento de Bases , Sequência de Bases , Humanos , Internet , MicroRNAs/classificação , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Conformação de Ácido Nucleico , RNA Bacteriano/classificação , RNA Bacteriano/metabolismo , RNA não Traduzido/classificação , RNA não Traduzido/metabolismo , RNA Viral/classificação , RNA Viral/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA , Software , Vírus/genética , Vírus/metabolismo
18.
J Biol Chem ; 295(46): 15438-15453, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32883809

RESUMO

Widespread testing for the presence of the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in individuals remains vital for controlling the COVID-19 pandemic prior to the advent of an effective treatment. Challenges in testing can be traced to an initial shortage of supplies, expertise, and/or instrumentation necessary to detect the virus by quantitative RT-PCR (RT-qPCR), the most robust, sensitive, and specific assay currently available. Here we show that academic biochemistry and molecular biology laboratories equipped with appropriate expertise and infrastructure can replicate commercially available SARS-CoV-2 RT-qPCR test kits and backfill pipeline shortages. The Georgia Tech COVID-19 Test Kit Support Group, composed of faculty, staff, and trainees across the biotechnology quad at Georgia Institute of Technology, synthesized multiplexed primers and probes and formulated a master mix composed of enzymes and proteins produced in-house. Our in-house kit compares favorably with a commercial product used for diagnostic testing. We also developed an environmental testing protocol to readily monitor surfaces for the presence of SARS-CoV-2. Our blueprint should be readily reproducible by research teams at other institutions, and our protocols may be modified and adapted to enable SARS-CoV-2 detection in more resource-limited settings.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Kit de Reagentes para Diagnóstico/economia , SARS-CoV-2/genética , Transferência de Tecnologia , Universidades/economia , Biotecnologia/métodos , COVID-19/virologia , Humanos , Kit de Reagentes para Diagnóstico/provisão & distribuição , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/isolamento & purificação
19.
medRxiv ; 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32766604

RESUMO

Widespread testing for the presence of the novel coronavirus SARS-CoV-2 in individuals remains vital for controlling the COVID-19 pandemic prior to the advent of an effective treatment. Challenges in testing can be traced to an initial shortage of supplies, expertise and/or instrumentation necessary to detect the virus by quantitative reverse transcription polymerase chain reaction (RT-qPCR), the most robust, sensitive, and specific assay currently available. Here we show that academic biochemistry and molecular biology laboratories equipped with appropriate expertise and infrastructure can replicate commercially available SARS-CoV-2 RT-qPCR test kits and backfill pipeline shortages. The Georgia Tech COVID-19 Test Kit Support Group, composed of faculty, staff, and trainees across the biotechnology quad at Georgia Institute of Technology, synthesized multiplexed primers and probes and formulated a master mix composed of enzymes and proteins produced in-house. Our in-house kit compares favorably to a commercial product used for diagnostic testing. We also developed an environmental testing protocol to readily monitor surfaces across various campus laboratories for the presence of SARS-CoV-2. Our blueprint should be readily reproducible by research teams at other institutions, and our protocols may be modified and adapted to enable SARS-CoV-2 detection in more resource-limited settings.

20.
Curr Protoc Bioinformatics ; 71(1): e104, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32846052

RESUMO

Non-coding RNAs are essential for all life and carry out a wide range of functions. Information about these molecules is distributed across dozens of specialized resources. RNAcentral is a database of non-coding RNA sequences that provides a unified access point to non-coding RNA annotations from >40 member databases and helps provide insight into the function of these RNAs. This article describes different ways of accessing the data, including searching the website and retrieving the data programmatically over web APIs and a public database. We also demonstrate an example Galaxy workflow for using RNAcentral for RNA-seq differential expression analysis. RNAcentral is available at https://rnacentral.org. © 2020 The Authors. Basic Protocol 1: Viewing RNAcentral sequence reports Basic Protocol 2: Using RNAcentral text search to explore ncRNA sequences Basic Protocol 3: Using RNAcentral sequence search Basic Protocol 4: Using RNAcentral FTP archive Support Protocol 1: Using web APIs for programmatic data access Support Protocol 2: Using public Postgres database to export large datasets Support Protocol 3: Analyze non-coding RNA in RNA-seq datasets using RNAcentral and Galaxy.


Assuntos
Biologia Computacional , Bases de Dados de Ácidos Nucleicos , RNA não Traduzido , Análise de Dados , Internet , RNA não Traduzido/genética , RNA-Seq , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA