Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 181: 110506, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39265454

RESUMO

D-Mannose 2-epimerase (MEase) catalyzes the bioconversion between D-glucose and D-mannose. It is an important potential biocatalyst for large-scale production of D-mannose, a functional monosaccharide used in pharmaceutical and food industries. In this study, a new microbial MEase was characterized from Runella zeae DSM 19591. The enzyme was purified by one-step nickel-affinity chromatography and determined to be a dimeric protein with two identical subunits of approximately 86.1 kDa by gel filtration. The enzyme showed the highest activity at pH 8.0 and 40 °C, with a specific activity of 2.99 U/mg on D-glucose and 3.71 U/mg on D-mannose. The melting temperature (Tm) was 49.4 °C and the half-life was 115.14 and 3.23 h at 35 and 40 °C, respectively. The purified enzyme (1 U/mL) produced 115.7 g/L of D-mannose from 500 g/L of D-glucose for 48 h, with a conversion ratio of 23.14 %. It was successfully expressed in Bacillus subtilis WB600 via pP43NMK as the vector. The highest fermentation activity was 10.58 U/mL after fed-batch cultivation for 28 h, and the whole cells of recombinant B. subtilis produced 114.0 g/L of D-mannose from 500 g/L of D-glucose, with a conversion ratio of 22.8 %.

2.
Foods ; 13(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39123599

RESUMO

Antinutrients, also known as anti-nutritional factors (ANFs), are compounds found in many plant-based foods that can limit the bioavailability of nutrients or can act as precursors to toxic substances. ANFs have controversial effects on human health, depending mainly on their concentration. While the positive effects of these compounds are well documented, the dangers they pose and the approaches to avoid them have not been discussed to the same extent. There is no dispute that many ANFs negatively alter the absorption of vitamins, minerals, and proteins in addition to inhibiting some enzyme activities, thus negatively affecting the bioavailability of nutrients in the human body. This review discusses the chemical properties, plant bioavailability, and deleterious effects of anti-minerals (phytates and oxalates), glycosides (cyanogenic glycosides and saponins), polyphenols (tannins), and proteinaceous ANFs (enzyme inhibitors and lectins). The focus of this study is on the possibility of controlling the amount of ANF in food through fermentation. An overview of the most common biochemical pathways for their microbial reduction is provided, showing the genetic basis of these phenomena, including the active enzymes, the optimal conditions of action, and some data on the regulation of their synthesis.

3.
Microbiol Resour Announc ; 12(12): e0069323, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014986

RESUMO

Bacillus velezensis R22 was isolated from a rice rhizosphere in Bulgaria. Its genome (assembled into 14 scaffolds) has a size of 4.08 Mbp and a G + C content of 46.35%. Nine full biosynthetic clusters for antimicrobials were predicted, among them two new gene clusters probably encoding polyketides named macrolactin R22 and velezensin.

4.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762368

RESUMO

2,3-Butanediol (2,3-BD) is an alcohol highly demanded in the chemical, pharmaceutical, and food industries. Its microbial production, safe non-pathogenic producer strains, and suitable substrates have been avidly sought in recent years. The present study investigated 2,3-BD synthesis by the GRAS Bacillus licheniformis 24 using chicory inulin as a cheap and renewable substrate. The process appears to be pH-dependent. At pH 5.25, the synthesis of 2,3-BD was barely detectable due to the lack of inulin hydrolysis. At pH 6.25, 2,3-BD concentration reached 67.5 g/L with rapid hydrolysis of the substrate but was accompanied by exopolysaccharide (EPS) synthesis. Since inulin conversion by bacteria is a complex process and begins with its hydrolysis, the question of the acting enzymes arose. Genome mining revealed that several glycoside hydrolase (GH) enzymes from different CAZy families are involved. Five genes encoding such enzymes in B. licheniformis 24 were amplified and sequenced: sacA, sacB, sacC, levB, and fruA. Real-time RT-PCR experiments showed that the process of inulin hydrolysis is regulated at the level of gene expression, as four genes were significantly overexpressed at pH 6.25. In contrast, the expression of levB remained at the same level at the different pH values at all-time points. It was concluded that the sacC and sacA/fruA genes are crucial for inulin hydrolysis. They encode exoinulinase (EC 3.2.1.80) and sucrases (EC 3.2.1.26), respectively. The striking overexpression of sacB under these conditions led to increased synthesis of EPS; therefore, the simultaneous production of 2,3-BD and EPS cannot be avoided.


Assuntos
Bacillus licheniformis , Bacillus , Humanos , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Inulina/metabolismo , Bacillus/metabolismo , Concentração de Íons de Hidrogênio , Expressão Gênica , Fermentação
5.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446315

RESUMO

The properties of Bacillus thuringiensis strains as a biopesticide with potent action against moths, beetles, and mosquitoes have been known for decades, with individual subspecies showing specific activity against a particular pest. The aim of the present work is to characterize strains that can be used for broad-spectrum pest control in agriculture. Twenty strains of B. thuringiensis were isolated from Bulgarian soil habitats. The strains were screened for genes encoding 12 different crystal (Cry) endotoxins by PCR with specific primer pairs. Seven of the isolates contained cry genes in their genomes. B. thuringiensis strains PL1, PL3, and PL20 contained at least three different cry genes, while B. thuringiensis serovar galleriae BTG contained at least four. Moreover, scanning electron microscopy (SEM) investigation revealed the production of bipyramidal (PL1, PL3, PL20), polygonal (PL1), cubic (BTG), and spherical crystals (BTG and PL20). Potentially containing the most cry genes, the BTG genome was sequenced and annotated. It comprises 6,275,416 base pairs, does not contain plasmids, has a GC content of 35.05%, and contained 7 genes encoding crystal toxins: cry1Ab35, cry1Db, cry1Fb, cry1Ib, cry2Ab, cry8Ea1, and cry9Ba. This unique combination would possibly enable the simultaneous pesticidal action against pest species from orders Lepidoptera, Coleoptera, Diptera, and Hemiptera, as well as class Gastropoda. Whole-genome sequencing provided accurate information about the presence, localization, and classification of Cry toxins in B. thuringiensis BTG, revealing the great potential of the strain for the development of new broad-spectrum bio-insecticides.


Assuntos
Bacillus thuringiensis , Besouros , Dípteros , Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Bacillus thuringiensis/genética , Bacillus thuringiensis/química , Endotoxinas/genética , Endotoxinas/química , Mariposas/genética , Besouros/genética , Proteínas Hemolisinas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Controle Biológico de Vetores
6.
Foods ; 12(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36981090

RESUMO

The treatment of agricultural areas with pesticides is an indispensable approach to improve crop yields and cannot be avoided in the coming decades. At the same time, significant amounts of pesticides remain in food and their ingestion causes serious damage such as neurological, gastrointestinal, and allergic reactions; cancer; and even death. However, during the fermentation processing of foods, residual amounts of pesticides are significantly reduced thanks to enzymatic degradation by the starter and accompanying microflora. This review concentrates on foods with the highest levels of pesticide residues, such as milk, yogurt, fermented vegetables (pickles, kimchi, and olives), fruit juices, grains, sourdough, and wines. The focus is on the molecular mechanisms of pesticide degradation due to the presence of specific microbial species. They contain a unique genetic pool that confers an appropriate enzymological profile to act as pesticide detoxifiers. The prospects of developing more effective biodetoxification strategies by engaging probiotic lactic acid bacteria are also discussed.

7.
Appl Microbiol Biotechnol ; 107(1): 175-185, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36454254

RESUMO

Acetoin is a high-value volatile compound widely applied in the chemical, food, and pharmaceutical industries. Despite the promising use of waste glycerol as a substrate in several microbial syntheses, acetoin production by natural microorganisms from glycerol as a sole carbon source has never been reported. The present study investigates the innate ability of Bacillus subtilis 35 (DSM 113,620) to convert glycerol into acetoin and 2,3-butanediol. The fermentation was directed towards acetoin production by medium selection and process parameter optimization using response surface design methodology. Thus, the fed batch conducted under optimized conditions received 77.9 g/L acetoin with a productivity of 0.85 g/L h and a yield of 0.36 g/g. The obtained acetoin concentration is the highest from glycerol reported to date, comparable to the highest values gained from glucose. Transcription analysis of the gene cluster glpPFKD showed that all four genes responsible for the utilization of glycerol were expressed. This natural ability of the strain, along with its non-pathogenic nature, defines B. subtilis 35 as a very promising candidate for acetoin production from glycerol on an industrial scale. KEY POINTS: • The highest microbial production of acetoin from glycerol. • Process parameter optimization directs glycerol conversion to acetoin production. • B. subtilis 35 is promising for industrial acetoin production from glycerol.


Assuntos
Acetoína , Bacillus subtilis , Bacillus subtilis/genética , Glicerol , Butileno Glicóis , Fermentação
8.
Molecules ; 27(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558051

RESUMO

Sialidase preparations are applied in structural and functional studies on sialoglycans, in the production of sialylated therapeutic proteins and synthetic substrates for use in biochemical research, etc. They are obtained mainly from pathogenic microorganisms; therefore, the demand for apathogenic producers of sialidase is of exceptional importance for the safe production of this enzyme. Here, we report for the first time the presence of a sialidase gene and enzyme in the saprophytic actinomycete Oerskovia paurometabola strain O129. An electrophoretically pure, glycosylated enzyme with a molecular weight of 70 kDa was obtained after a two-step chromatographic procedure using DEAE cellulose and Q-sepharose. The biochemical characterization showed that the enzyme is extracellular, inductive, and able to cleave α(2→3,6,8) linked sialic acids with preference for α(2→3) bonds. The enzyme production was strongly induced by glycomacropeptide (GMP) from milk whey, as well as by sialic acid. Investigation of the deduced amino acid sequence revealed that the protein molecule has the typical six-bladed ß-propeller structure and contains all features of bacterial sialidases, i.e., an YRIP motif, five Asp-boxes, and the conserved amino acids in the active site. The presence of an unusual signal peptide of 40 amino acids was predicted. The sialidase-producing O. paurometabola O129 showed high and constant enzyme production. Together with its saprophytic nature, this makes it a reliable producer with high potential for industrial application.


Assuntos
Ácido N-Acetilneuramínico , Neuraminidase , Neuraminidase/metabolismo , Sequência de Aminoácidos , Ácido N-Acetilneuramínico/metabolismo , Ácidos Siálicos
9.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430784

RESUMO

ß-galactosidase is an enzyme with dual activity and important industrial application. As a hydrolase, the enzyme eliminates lactose in milk, while as a trans-galactosidase it produces prebiotic galactooligosaccharides (GOS) with various degrees of polymerization (DP). The aim of the present study is the molecular characterization of ß-galactosidase from a Bulgarian isolate, Lactobacillus delbrueckii subsp. bulgaricus 43. The sequencing of the ß-gal gene showed that it encodes a new enzyme with 21 amino acid replacements compared to all other ß-galactosidases of this species. The molecular model revealed that the new ß-galactosidase acts as a tetramer. The amino acids D207, H386, N464, E465, Y510, E532, H535, W562, N593, and W980 form the catalytic center and interact with Mg2+ ions and substrate. The ß-gal gene was cloned into a vector allowing heterologous expression of E. coli BL21(DE3) with high efficiency, as the crude enzyme reached 3015 U/mL of the culture or 2011 U/mg of protein. The enzyme's temperature optimum at 55 °C, a pH optimum of 6.5, and a positive influence of Mg2+, Mn2+, and Ca2+ on its activity were observed. From lactose, ß-Gal produced a large amount of GOS with DP3 containing ß-(1→3) and ß-(1→4) linkages, as the latter bond is particularly atypical for the L. bulgaricus enzymes. DP3-GOS formation was positively affected by high lactose concentrations. The process of lactose conversion was rapid, with a 34% yield of DP3-GOS in 6 h, and complete degradation of 200 g/L of lactose for 12 h. On the other hand, the enzyme was quite stable at 55 °C and retained about 20% of its activity after 24 h of incubation at this temperature. These properties expand our horizons as regards the use of ß-galactosidases in industrial processes for the production of lactose-free milk and GOS-enriched foods.


Assuntos
Lactobacillus delbrueckii , Animais , Lactobacillus delbrueckii/genética , Escherichia coli/genética , Escherichia coli/metabolismo , beta-Galactosidase/metabolismo , Lactose/química , Leite/metabolismo
10.
Nutrients ; 14(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35631179

RESUMO

Toxic ingredients in food can lead to serious food-related diseases. Such compounds are bacterial toxins (Shiga-toxin, listeriolysin, Botulinum toxin), mycotoxins (aflatoxin, ochratoxin, zearalenone, fumonisin), pesticides of different classes (organochlorine, organophosphate, synthetic pyrethroids), heavy metals, and natural antinutrients such as phytates, oxalates, and cyanide-generating glycosides. The generally regarded safe (GRAS) status and long history of lactic acid bacteria (LAB) as essential ingredients of fermented foods and probiotics make them a major biological tool against a great variety of food-related toxins. This state-of-the-art review aims to summarize and discuss the data revealing the involvement of LAB in the detoxification of foods from hazardous agents of microbial and chemical nature. It is focused on the specific properties that allow LAB to counteract toxins and destroy them, as well as on the mechanisms of microbial antagonism toward toxigenic producers. Toxins of microbial origin are either adsorbed or degraded, toxic chemicals are hydrolyzed and then used as a carbon source, while heavy metals are bound and accumulated. Based on these comprehensive data, the prospects for developing new combinations of probiotic starters for food detoxification are considered.


Assuntos
Alimentos Fermentados , Lactobacillales , Metais Pesados , Micotoxinas , Probióticos , Lactobacillales/metabolismo , Micotoxinas/toxicidade
11.
Microorganisms ; 9(10)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34683448

RESUMO

Bacillus licheniformis is a soil bacterium with many industrial applications. In addition to enzymes, platform chemicals, antibiotics and phytohormones, the species produces exopolysaccharides (EPSs) of various biological activities. This study revealed that Bulgarian isolate B. licheniformis 24 produced EPSs consisting of galactose, glucose and mannose with substrate-dependent ratio. From glucose, B. licheniformis 24 secreted EPS1, consisting of 54% galactose, 39% glucose and 7% mannose. From fructose, the strain formed EPS2, containing 51% glucose, 30% mannose and 19% galactose. Batch cultivation in flasks yielded 2.2-2.6 g/L EPS1 and 1.90-2.11 g/L EPS2. Four to five times higher yields of EPS were obtained from both substrates during batch and fed-batch processes in a fermenter at 37.8 °C, pH 6.2 and aeration 3.68 vvm. The batch process with 200 g/L of starting substrates received 9.64 g/L EPS1 and 6.29 g/L EPS2, reaching maximum values at the 33rd and 24th h, respectively. Fed-batch fermentation resulted in the highest yields, 12.61 g/L EPS1 and 7.03 g/L EPS2. In all processes, EPSs were produced only in the exponential growth phase. Both EPSs exhibited antioxidant activity, but EPS2 was much more potent in this regard, reaching 811 µM Vitamin C Equivalent Antioxidant Capacity (versus 135 µM for EPS1). EPS1 displayed antibacterial activity against a non-O1 strain of Vibrio cholerae.

12.
Biomolecules ; 11(10)2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34680121

RESUMO

The continual plastic accumulation in the environment and the hazardous consequences determine the interest in thermophiles as possible effective plastic degraders, due to their unique metabolic mechanisms and change of plastic properties at elevated temperatures. PCL is one of major biodegradable plastics with promising application to replace existing non-biodegradable polymers. Metagenomic analysis of the phylogenetic diversity in plastic contaminated area of Marikostinovo hot spring, Bulgaria revealed a higher number taxonomic groups (11) in the sample enriched without plastic (Marikostinovo community, control sample, MKC-C) than in that enriched in the presence of poly-ε-caprolactone (PCL) (MKC-P), (7). A strong domination of the phylum Proteobacteria was observed for MKC-C, while the dominant phyla in MKC-P were Deinococcus-Thermus and Firmicutes. Among the strains isolated from MKC-P, the highest esterase activity was registered for Brevibacillus thermoruber strain 7 at 55 °C. Its co-cultivation with another isolate resulted in ~10% increase in enzyme activity. During a 28-day biodegradation process, a decrease in PCL molecular weight and weight loss were established resulting in 100% degradation by MKC-P and 63.6% by strain 7. PCL degradation intermediate profiles for MKC-P and pure strain were similar. Broken plastic pieces from PCL surface and formation of a biofilm by MKC-P were observed by SEM, while the pure strain caused significant deformation of PCL probes without biofilm formation.


Assuntos
Brevibacillus/isolamento & purificação , Brevibacillus/metabolismo , Fontes Termais/microbiologia , Poliésteres/metabolismo , Temperatura , Biodegradação Ambiental , Biofilmes/crescimento & desenvolvimento , Bulgária , Cromatografia em Gel , Esterases/metabolismo , Filogenia , Plásticos
13.
Molecules ; 26(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34577096

RESUMO

To adapt to various ecological niches, the members of genus Bacillus display a wide spectrum of glycoside hydrolases (GH) responsible for the hydrolysis of cellulose and lignocellulose. Being abundant and renewable, cellulose-containing plant biomass may be applied as a substrate in second-generation biotechnologies for the production of platform chemicals. The present study aims to enhance the natural cellulase activity of two promising 2,3-butanediol (2,3-BD) producers, Bacillus licheniformis 24 and B. velezensis 5RB, by cloning and heterologous expression of cel8A and cel48S genes of Acetivibrio thermocellus. In B. licheniformis, the endocellulase Cel8A (GH8) was cloned to supplement the action of CelA (GH9), while in B. velezensis, the cellobiohydrolase Cel48S (GH48) successfully complemented the activity of endo-cellulase EglS (GH5). The expression of the natural and heterologous cellulase genes in both hosts was demonstrated by reverse-transcription PCR. The secretion of clostridial cellulases was additionally enhanced by enzyme fusion to the subtilisin-like signal peptide, reaching a significant increase in the cellulase activity of the cell-free supernatants. The results presented are the first to reveal the possibility of genetic complementation for enhancement of cellulase activity in bacilli, thus opening the prospect for genetic improvement of strains with an important biotechnological application.


Assuntos
Bacillus licheniformis/enzimologia , Bacillus licheniformis/genética , Bacillus/enzimologia , Bacillus/genética , Celulases/genética , Celulases/metabolismo , Clostridium/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Celulose/metabolismo , Clonagem Molecular , Hidrólise , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Microorganisms ; 9(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668910

RESUMO

The reported health effects of fermented dairy foods, which are traditionally manufactured in Bulgaria, are connected with their microbial biodiversity. The screening and development of probiotic starters for dairy products with unique properties are based exclusively on the isolation and characterization of lactic acid bacterial (LAB) strains. This study aims to systematically describe the LAB microbial content of artisanal products such as Bulgarian-type yoghurt, white brined cheese, kashkaval, koumiss, kefir, katak, and the Rhodope's brano mliako. The original technologies for their preparation preserve the valuable microbial content and improve their nutritional and probiotic qualities. This review emphasises the features of LAB starters and the autochthonous microflora, the biochemistry of dairy food production, and the approaches for achieving the fortification of the foods with prebiotics, bioactive peptides (ACE2-inhibitors, bacteriocins, cyclic peptides with antimicrobial activity), immunomodulatory exopolysaccharides, and other metabolites (indol-3-propionic acid, free amino acids, antioxidants, prebiotics) with reported beneficial effects on human health. The link between the microbial content of dairy foods and the healthy human microbiome is highlighted.

15.
Genes (Basel) ; 12(2)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33514005

RESUMO

Biobutanol is a promising alternative fuel with impaired microbial production thanks to its toxicity. Lactiplantibacillus plantarum (L. plantarum) is among the few bacterial species that can naturally tolerate 3% (v/v) butanol. This study aims to identify the genetic factors involved in the butanol stress response of L. plantarum by comparing the differential gene expression in two strains with very different butanol tolerance: the highly resistant Ym1, and the relatively sensitive 8-1. During butanol stress, a total of 319 differentially expressed genes (DEGs) were found in Ym1, and 516 in 8-1. Fifty genes were upregulated and 54 were downregulated in both strains, revealing the common species-specific effects of butanol stress: upregulation of multidrug efflux transporters (SMR, MSF), toxin-antitoxin system, transcriptional regulators (TetR/AcrR, Crp/Fnr, and DeoR/GlpR), Hsp20, and genes involved in polysaccharide biosynthesis. Strong inhibition of the pyrimidine biosynthesis occurred in both strains. However, the strains differed greatly in DEGs responsible for the membrane transport, tryptophan synthesis, glycerol metabolism, tRNAs, and some important transcriptional regulators (Spx, LacI). Uniquely upregulated in the butanol-resistant strain Ym1 were the genes encoding GntR, GroEL, GroES, and foldase PrsA. The phosphoenolpyruvate flux and the phosphotransferase system (PTS) also appear to be major factors in butanol tolerance.


Assuntos
Adaptação Biológica , Butanóis/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Lactobacillus/efeitos dos fármacos , Lactobacillus/genética , Transcriptoma , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Anotação de Sequência Molecular
16.
Biotechnol Adv ; 46: 107658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33220435

RESUMO

The energy crisis, depletion of oil reserves, and global climate changes are pressing problems of developed societies. One possibility to counteract that is microbial production of butanol, a promising new fuel and alternative to many petrochemical reagents. However, the high butanol toxicity to all known microbial species is the main obstacle to its industrial implementation. The present state of the art review aims to expound the recent advances in modern omics approaches to resolving this insurmountable to date problem of low butanol tolerance. Genomics, transcriptomics, and proteomics show that butanol tolerance is a complex phenomenon affecting multiple genes and their expression. Efflux pumps, stress and multidrug response, membrane transport, and redox-related genes are indicated as being most important during butanol challenge, in addition to fine-tuning of global regulators of transcription (Spo0A, GntR), which may further improve tolerance. Lipidomics shows that the alterations in membrane composition (saturated lipids and plasmalogen increase) are very much species-specific and butanol-related. Glycomics discloses the pleiotropic effect of CcpA, the role of alternative sugar transport, and the production of exopolysaccharides as alternative routes to overcoming butanol stress. Unfortunately, the strain that simultaneously syntheses and tolerates butanol in concentrations that allow its commercialization has not yet been discovered or produced. Omics insight will allow the purposeful increase of butanol tolerance in natural and engineered producers and the effective heterologous expression of synthetic butanol pathways in strains hereditary butanol-resistant up to 3.2 - 4.9% (w/v). Future breakthrough can be achieved by a detailed study of the membrane proteome, of which 21% are proteins with unknown functions.


Assuntos
1-Butanol , Butanóis , Proteoma , Proteômica
17.
Nutrients ; 12(4)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316499

RESUMO

Grains are a substantial source of macronutrients and energy for humans. Lactic acid (LA) fermentation is the oldest and most popular way to improve the functionality, nutritional value, taste, appearance and safety of cereal foods and reduce the energy required for cooking. This literature review discusses lactic acid fermentation of the most commonly used cereals and pseudocereals by examination of the microbiological and biochemical fundamentals of the process. The study provides a critical overview of the indispensable participation of lactic acid bacteria (LAB) in the production of many traditional, ethnic, ancient and modern fermented cereals and beverages, as the analysed literature covers 40 years. The results reveal that the functional aspects of LAB fermented foods are due to significant molecular changes in macronutrients during LA fermentation. Through the action of a vast microbial enzymatic pool, LAB form a broad spectrum of volatile compounds, bioactive peptides and oligosaccharides with prebiotic potential. Modern applications of this ancient bioprocess include the industrial production of probiotic sourdough, fortified pasta, cereal beverages and "boutique" pseudocereal bread. These goods are very promising in broadening the daily menu of consumers with special nutritional needs.


Assuntos
Biotecnologia , Grão Comestível/microbiologia , Fermentação , Microbiologia de Alimentos , Ácido Láctico/metabolismo , Lactobacillales/fisiologia , Valor Nutritivo , Bebidas/microbiologia , Pão/microbiologia , Humanos
18.
J Biosci Bioeng ; 130(1): 20-28, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32169317

RESUMO

2,3-Butanediol (2,3-BD) is a valuable platform chemical with extensive industrial applications. The demand for its safe and economic microbial synthesis resulted in increased interest in the isolation of non-pathogenic producers capable of converting cheap and renewable materials. This study reports the isolation of 62 new non-pathogenic Bacillus strains producing 2,3-BD. Three strains were found, including Bacillus velezensis 5RB, B. toyonensis 11RA and B. safensis 14A, which belonged to species not previously reported as 2,3-BD producers. Seventeen strains displayed cellulolytic activity, degrading carboxymethyl cellulose, HE-cellulose and ß-glucan, whereas 5 strains were also able to hydrolyze arabinoxylan, arabinan, galactomannan, xyloglucan, xylan and galactan (included in hemicellulose), as well as starch and fructans. The strain capacity to ferment lignocellulosic sugars to 2,3-BD corresponded to the activities of CAZymes engaged in the hydrolysis of the relevant polysaccharides. Regardless of species, Bacillus strains converted glucose, cellobiose, and mannose to 2,3-BD with higher concentration, productivity and yield than arabinose, xylose, and galactose. B. velezensis 5RB was the only strain, which was capable to produce 2,3-BD from all lignocellulosic sugars which corresponded to the presence of the highest extracellular endo-α-(1→5)-l-arabinanase, endo-1,4-ß-xylanase, 1,4-ß-xylosidase, and endo-ß-1,4-galactanase activity. The annotation of its genome showed the presence of 26 genes encoding glycoside-hydrolases allowing biomass degradation. In conclusion, the non-risk new isolated Bacillus strains are promising for 2,3-BD production from agro-industrial residues. When lignocellulose is used, the process would be more efficient if the substrate content is rich in cellulose and low in hemicelluloses.


Assuntos
Bacillus/metabolismo , Butileno Glicóis/metabolismo , Proteínas de Bactérias/metabolismo , Biomassa , Celulose/metabolismo , Fermentação , Glucanos/metabolismo , Hidrólise , Lignina/metabolismo , Polissacarídeos/metabolismo , Xilanos/metabolismo , Xilosidases/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-30637401

RESUMO

Bacillus velezensis 5RB is capable of producing large amounts of 2,3-butanediol. Whole-genome sequencing revealed that the strain contains one circular chromosome of 3.91 Mbp without plasmids. A large part of the genome is devoted to carbohydrate metabolism, encoding an abundance of enzymes participating in polysaccharide utilization pathways.

20.
Eng Life Sci ; 19(2): 133-142, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32624995

RESUMO

Highly butanol-tolerant strains have always been attractive because of their potential as microbial hosts for butanol production. However, due to the amphiphilic nature of 1-butanol as a solvent, the relationship between the cell surface hydrophobicity and butanol resistance remained ambiguous to date. In this work, the quantitatively estimated cell surface hydrophobicity of 74 Lactic acid bacteria strains were juxtaposed to their tolerance to various butanol concentrations. The obtained results revealed that the strains' hydrophobicity was inversely proportional to their butanol tolerance. All highly butanol-resistant strains were hydrophilic (cell surface hydrophobicity<1%), whereas the more hydrophobic the strains were, the more sensitive to butanol they were. Furthermore, cultivation at increasing butanol concentrations showed a clear tendency to decrease the level of hydrophobicity in all tested organisms, thus suggesting possible adaptation mechanisms. Purposeful reduction of cell surface hydrophobicity (by removal of S-layer proteins from the cell envelope) also led to an increase of butanol resistance. Since the results covered 23 different Lactic acid bacteria species of seven genera, it could be concluded that regardless of the species, the lower degree of cells' hydrophobicity clearly correlates with the higher level of butanol tolerance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA