Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Phys Med ; 117: 103189, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043325

RESUMO

PURPOSE: The use of Monte Carlo (MC) simulations capable of reproducing radiobiological effects of ionising radiation on human cell lines is of great importance, especially for cases involving protons and heavier ion beams. In the latter, huge uncertainties can arise mainly related to the effects of the secondary particles produced in the beam-tissue interaction. This paper reports on a detailed MC study performed using Geant4-based approach on three cancer cell lines, the HTB-177, CRL-5876 and MCF-7, that were previously irradiated with therapeutic proton and carbon ion beams. METHODS: A Geant4-based approach used jointly with analytical calculations has been developed to provide a more realistic estimation of the radiobiological damage produced by proton and carbon beams in tissues, reproducing available data obtained from in vitro cell irradiations. The MC "Hadrontherapy" Geant4 application and the Local Effect Model: LEM I, LEM II and LEM III coupled with the different numerical approaches: RapidRusso (RR) and RapidScholz (RS) were used in the study. RESULTS: Experimental survival curves are compared with those evaluated using the highlighted Geant4 MC-based approach via chi-square statistical analysis, for the combinations of radiobiological models and numerical approaches, as outlined above. CONCLUSION: This study has presented a comparison of the survival data from MC simulations to experimental survival data for three cancer cell lines. An overall best level of agreement was obtained for the HTB-177 cells.


Assuntos
Terapia com Prótons , Prótons , Salicilatos , Humanos , Dosagem Radioterapêutica , Carbono , Planejamento da Radioterapia Assistida por Computador , Método de Monte Carlo , Eficiência Biológica Relativa
3.
Sensors (Basel) ; 23(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687877

RESUMO

Today, mobile robots have a wide range of real-world applications where they can replace or assist humans in many tasks, such as search and rescue, surveillance, patrolling, inspection, environmental monitoring, etc. These tasks usually require a robot to navigate through a dynamic environment with smooth, efficient, and safe motion. In this paper, we propose an online smooth-motion-planning method that generates a smooth, collision-free patrolling trajectory based on clothoid curves. Moreover, the proposed method combines global and local planning methods, which are suitable for changing large environments and enabling efficient path replanning with an arbitrary robot orientation. We propose a method for planning a smoothed path based on the golden ratio wherein a robot's orientation is aligned with a new path that avoids unknown obstacles. The simulation results show that the proposed algorithm reduces the patrolling execution time, path length, and deviation of the tracked trajectory from the patrolling route compared to the original patrolling method without smoothing. Furthermore, the proposed algorithm is suitable for real-time operation due to its computational simplicity, and its performance was validated through the results of an experiment employing a differential-drive mobile robot.

4.
Phys Med ; 112: 102613, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37356419

RESUMO

PURPOSE: This study aimed to develop a computational environment for the accurate simulation of human cancer cell irradiation using Geant4-DNA. New cell geometrical models were developed and irradiated by alpha particle beams to induce DNA damage. The proposed approach may help further investigation of the benefits of external alpha irradiation therapy. METHODS: The Geant4-DNA Monte Carlo (MC) toolkit allows the simulation of cancer cell geometries that can be combined with accurate modelling of physical, physicochemical and chemical stages of liquid water irradiation, including radiolytic processes. Geant4-DNA is used to calculate direct and non-direct DNA damage yields, such as single and double strand breaks, produced by the deposition of energy or by the interaction of DNA with free radicals. RESULTS: In this study, the "molecularDNA" example application of Geant4-DNA was used to quantify early DNA damage in human cancer cells upon irradiation with alpha particle beams, as a function of linear energy transfer (LET). The MC simulation results are compared to experimental data, as well as previously published simulation data. The simulation results agree well with the experimental data on DSB yields in the lower LET range, while the experimental data on DSB yields are lower than the results obtained with the "molecularDNA" example in the higher LET range. CONCLUSION: This study explored and demonstrated the possibilities of the Geant4-DNA toolkit together with the "molecularDNA" example to simulate the helium beam irradiation of cancer cell lines, to quantify the early DNA damage, or even the following DNA damage response.


Assuntos
Hélio , Neoplasias , Humanos , Simulação por Computador , Transferência Linear de Energia , DNA , Método de Monte Carlo , Dano ao DNA , Neoplasias/radioterapia
5.
Phys Med ; 105: 102508, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36549067

RESUMO

PURPOSE: Track structure Monte Carlo (MC) codes have achieved successful outcomes in the quantitative investigation of radiation-induced initial DNA damage. The aim of the present study is to extend a Geant4-DNA radiobiological application by incorporating a feature allowing for the prediction of DNA rejoining kinetics and corresponding cell surviving fraction along time after irradiation, for a Chinese hamster V79 cell line, which is one of the most popular and widely investigated cell lines in radiobiology. METHODS: We implemented the Two-Lesion Kinetics (TLK) model, originally proposed by Stewart, which allows for simulations to calculate residual DNA damage and surviving fraction along time via the number of initial DNA damage and its complexity as inputs. RESULTS: By optimizing the model parameters of the TLK model in accordance to the experimental data on V79, we were able to predict both DNA rejoining kinetics at low linear energy transfers (LET) and cell surviving fraction. CONCLUSION: This is the first study to demonstrate the implementation of both the cell surviving fraction and the DNA rejoining kinetics with the estimated initial DNA damage, in a realistic cell geometrical model simulated by full track structure MC simulations at DNA level and for various LET. These simulation and model make the link between mechanistic physical/chemical damage processes and these two specific biological endpoints.


Assuntos
Dano ao DNA , Prótons , Cricetinae , Animais , Sobrevivência Celular , Cinética , DNA/química , Método de Monte Carlo
6.
Sensors (Basel) ; 22(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36501971

RESUMO

The complete coverage path planning is a process of finding a path which ensures that a mobile robot completely covers the entire environment while following the planned path. In this paper, we propose a complete coverage path planning algorithm that generates smooth complete coverage paths based on clothoids that allow a nonholonomic mobile robot to move in optimal time while following the path. This algorithm greatly reduces coverage time, the path length, and overlap area, and increases the coverage rate compared to the state-of-the-art complete coverage algorithms, which is verified by simulation. Furthermore, the proposed algorithm is suitable for real-time operation due to its computational simplicity and allows path replanning in case the robot encounters unknown obstacles. The efficiency of the proposed algorithm is validated by experimental results on the Pioneer 3DX mobile robot.

7.
ACS Omega ; 7(3): 2565-2570, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35097255

RESUMO

Examples on the real-world field application of Raman spectroscopy with systematic analysis of the intensity variation of D and G bands corresponding to the change of excitation laser energy to characterize and compare coke species from various industrial processes are presented. The findings indicate the different degree of sp2 and sp3 hybridized bonding structures of amorphous carbon collected from different industrial processes as well as heavy carbonaceous deposits generated by industrial catalysts. This spectroscopic methodology is practical and highly beneficial in identifying coke formation mechanisms in industrial processes, as well as supporting design strategies to abate the undesired coke formation on industrial catalysts.

8.
Cancers (Basel) ; 13(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638425

RESUMO

Accurately modeling the radiobiological mechanisms responsible for the induction of DNA damage remains a major scientific challenge, particularly for understanding the effects of low doses of ionizing radiation on living beings, such as the induction of carcinogenesis. A computational approach based on the Monte Carlo technique to simulate track structures in a biological medium is currently the most reliable method for calculating the early effects induced by ionizing radiation on DNA, the primary cellular target of such effects. The Geant4-DNA Monte Carlo toolkit can simulate not only the physical, but also the physico-chemical and chemical stages of water radiolysis. These stages can be combined with simplified geometric models of biological targets, such as DNA, to assess direct and indirect early DNA damage. In this study, DNA damage induced in a human fibroblast cell was evaluated using Geant4-DNA as a function of incident particle type (gammas, protons, and alphas) and energy. The resulting double-strand break yields as a function of linear energy transfer closely reproduced recent experimental data. Other quantities, such as fragment length distribution, scavengeable damage fraction, and time evolution of damage within an analytical repair model also supported the plausibility of predicting DNA damage using Geant4-DNA.The complete simulation chain application "molecularDNA", an example for users of Geant4-DNA, will soon be distributed through Geant4.

9.
Nanoscale ; 13(26): 11427-11438, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34160525

RESUMO

Al2O3-supported Pt/Pd bimetallic catalysts were studied using in situ atmospheric pressure and ex situ transmission electron microscopy. Real-time observation during separate oxidation and reduction processes provides nanometer-scale structural details - both morphology and chemistry - of supported Pt/Pd particles at intermediate states not observable through typical ex situ experiments. Significant metal vaporization was observed at temperatures above 600 °C, both in pure oxygen and in air. This behavior implies that material transport through the vapor during typical catalyst aging processes for oxidation can play a more significant role in catalyst structural evolution than previously thought. Concomitantly, Pd diffusion away from metallic nanoparticles on the surface of Al2O3 can also contribute to the disappearance of metal particles. Electron micrographs from in situ oxidation experiments were mined for data, including particle number, size, and aspect ratio using machine learning image segmentation. Under oxidizing conditions, we observe not only a decrease in the number of metal particles but also a decrease in the surface area to volume ratio. Some of the metal that diffuses away from particles on the oxide support can be regenerated and reappears back on the catalyst support surface under reducing conditions. These observations provide insight on how rapid cycling between oxidative and reductive catalytic operating conditions affects catalyst structure.

10.
Int J Radiat Biol ; 97(9): 1229-1240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34187289

RESUMO

PURPOSE: The complex relationship between linear energy transfer (LET) and cellular response to radiation is not yet fully elucidated. To better characterize DNA damage after irradiations with therapeutic protons, we monitored formation and disappearance of DNA double-strand breaks (DNA DSB) as a function of LET and time. Comparisons with conventional γ-rays and high LET carbon ions were also performed. MATERIALS AND METHODS: In the present work, we performed immunofluorescence-based assay to determine the amount of DNA DSB induced by different LET values along the 62 MeV therapeutic proton Spread out Bragg peak (SOBP) in three cancer cell lines, i.e. HTB140 melanoma, MCF-7 breast adenocarcinoma and HTB177 non-small lung cancer cells. Time dependence of foci formation was followed as well. To determine irradiation positions, corresponding to the desired LET values, numerical simulations were carried out using Geant4 toolkit. We compared γ-H2AX foci persistence after irradiations with protons to that of γ-rays and carbon ions. RESULTS: With the rise of LET values along the therapeutic proton SOBP, the increase of γ-H2AX foci number is detected in the three cell lines up to the distal end of the SOBP, while there is a decrease on its distal fall-off part. With the prolonged incubation time, the number of foci gradually drops tending to attain the residual level. For the maximum number of DNA DSB, irradiation with protons attain higher level than that of γ-rays. Carbon ions produce more DNA DSB than protons but not substantially. The number of residual foci produced by γ-rays is significantly lower than that of protons and particularly carbon ions. Carbon ions do not produce considerably higher number of foci than protons, as it could be expected due to their physical properties. CONCLUSIONS: In situ visualization of γ-H2AX foci reveal creation of more lesions in the three cell lines by clinically relevant proton SOBP than γ-rays. The lack of significant differences in the number of γ-H2AX foci between the proton and carbon ion-irradiated samples suggests an increased complexity of DNA lesions and slower repair kinetics after carbon ions compared to protons. For all three irradiation types, there is no major difference between the three cell lines shortly after irradiations, while later on, the formation of residual foci starts to express the inherent nature of tested cells, therefore increasing discrepancy between them.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Transferência Linear de Energia , Prótons , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Eficiência Biológica Relativa
11.
Sci Rep ; 10(1): 20788, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247225

RESUMO

Ionising radiation induced DNA damage and subsequent biological responses to it depend on the radiation's track-structure and its energy loss distribution pattern. To investigate the underlying biological mechanisms involved in such complex system, there is need of predicting biological response by integrated Monte Carlo (MC) simulations across physics, chemistry and biology. Hence, in this work, we have developed an application using the open source Geant4-DNA toolkit to propose a realistic "fully integrated" MC simulation to calculate both early DNA damage and subsequent biological responses with time. We had previously developed an application allowing simulations of radiation induced early DNA damage on a naked cell nucleus model. In the new version presented in this work, we have developed three additional important features: (1) modeling of a realistic cell geometry, (2) inclusion of a biological repair model, (3) refinement of DNA damage parameters for direct damage and indirect damage scoring. The simulation results are validated with experimental data in terms of Single Strand Break (SSB) yields for plasmid and Double Strand Break (DSB) yields for plasmid/human cell. In addition, the yields of indirect DSBs are compatible with the experimental scavengeable damage fraction. The simulation application also demonstrates agreement with experimental data of [Formula: see text]-H2AX yields for gamma ray irradiation. Using this application, it is now possible to predict biological response along time through track-structure MC simulations.


Assuntos
Dano ao DNA , Reparo do DNA , Modelos Biológicos , Simulação por Computador , DNA/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Raios gama/efeitos adversos , Histonas/efeitos da radiação , Humanos , Método de Monte Carlo , Software
12.
Int J Radiat Biol ; 96(11): 1400-1412, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32910708

RESUMO

PURPOSE: Analysis of elimination of four human radioresistant malignant cell lines to mono-energetic and non mono-energetic incoming carbon ion beams, characterized by different linear energy transfer (LET) qualities is performed. Comparisons with protons from the middle of the therapeutic spread out Bragg peak (SOBP) and reference γ-rays are also included. MATERIALS AND METHODS: HTB140 cells were irradiated at five positions, with different LET, along the 62 MeV carbon pristine Bragg peak. To provide reliable reproducibility of irradiations at INFN-LNS, as the carbon Bragg peak is very narrow, precise positioning of samples for desired LET value is complicated. The peak was slightly widened using two ripple filters. After defining irradiation position and LET at the peak itself where cell killing is almost the highest, irradiation position with the same LET value was found within somewhat broadened peak. HTB140, MCF-7, HTB177 and CRL5876 cells were irradiated at the two described positions. Additionally, irradiations in the middle of 62 MeV proton SOBP and reference γ-rays were performed. Doses ranged from 0.5 to 16 Gy. Cell survival and corresponding radiobiological parameters were assessed seven days after irradiations. RESULTS: When moving irradiation position along the carbon Bragg curve, LET rises from 85 to 747 keV/µm, while surviving fraction at 2 Gy (SF2) for HTB140 cells, falls from 0.72 to 0.57 further rising to 0.73 on the distal fall-off part of the curve. Improved cell radiosensitivity is seen for the doses below 4 Gy. Relative biological effectiveness (RBE) increases from 4.56 to 7.69 and drops to 4.23. Almost the highest cell killing LET, being ∼200 keV/µm, is used to irradiate HTB140, MCF-7, HTB177 and CRL5876 cells within the pristine and slightly broadened Bragg peak. After irradiations with protons of the mid SOBP, carbon ions of the pristine and slightly widened Bragg peak RBE ranges for HTB140 cells from 2.08, 4.81 to 7.06, for MCF-7 from 1.70, 3.28 to 4.17, for HTB177 from 1.98, 4.18 to 5.08 and for CRL5876 from 1.33, 2.57 to 3.51. CONCLUSIONS: Significant elimination of HTB140 cells is observed along the carbon Bragg curve. The highest one is achieved by LET that is at the level of already reported. For the same LET, mono-energetic carbon ions provide higher cell elimination than the non mono-energetic. For all cell lines, both carbon ion beams, more the monoenergetic one, express stronger killing rate than protons and especially γ-rays.


Assuntos
Carbono/farmacologia , Transferência Linear de Energia/efeitos da radiação , Tolerância a Radiação , Radiobiologia , Linhagem Celular Tumoral , Humanos
13.
IEEE Trans Cybern ; 50(3): 1321-1332, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31567105

RESUMO

This article proposes a framework for human-pose estimation from the wearable sensors that rely on a Lie group representation to model the geometry of the human movement. Human body joints are modeled by matrix Lie groups, using special orthogonal groups SO(2) and SO(3) for joint pose and special Euclidean group SE(3) for base-link pose representation. To estimate the human joint pose, velocity, and acceleration, we develop the equations for employing the extended Kalman filter on Lie groups (LG-EKF) to explicitly account for the non-Euclidean geometry of the state space. We present the observability analysis of an arbitrarily long kinematic chain of SO(3) elements based on a differential geometric approach, representing a generalization of kinematic chains of a human body. The observability is investigated for the system using marker position measurements. The proposed algorithm is compared with two competing approaches: 1) the extended Kalman filter (EKF) and 2) unscented KF (UKF) based on the Euler angle parametrization, in both simulations and extensive real-world experiments. The results show that the proposed approach achieves significant improvements over the Euler angle-based filters. It provides more accurate pose estimates, is not sensitive to gimbal lock, and more consistently estimates the covariances.


Assuntos
Fenômenos Biomecânicos/fisiologia , Movimento/fisiologia , Algoritmos , Humanos , Modelos Teóricos , Postura/fisiologia , Robótica/métodos
14.
Phys Med ; 62: 152-157, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31109825

RESUMO

The advancement of multidisciplinary research fields dealing with ionising radiation induced biological damage - radiobiology, radiation physics, radiation protection and, in particular, medical physics - requires a clear mechanistic understanding of how cellular damage is induced by ionising radiation. Monte Carlo (MC) simulations provide a promising approach for the mechanistic simulation of radiation transport and radiation chemistry, towards the in silico simulation of early biological damage. We have recently developed a fully integrated MC simulation that calculates early single strand breaks (SSBs) and double strand breaks (DSBs) in a fractal chromatin based human cell nucleus model. The results of this simulation are almost equivalent to past MC simulations when considering direct/indirect strand break fraction, DSB yields and fragment distribution. The simulation results agree with experimental data on DSB yields within 13.6% on average and fragment distributions agree within an average of 34.8%.


Assuntos
Núcleo Celular/genética , Núcleo Celular/efeitos da radiação , Dano ao DNA , Fractais , Modelos Biológicos , Método de Monte Carlo , Animais , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Quebras de DNA de Cadeia Simples/efeitos da radiação , Fatores de Tempo
15.
Int J Radiat Biol ; 95(3): 274-285, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30451568

RESUMO

PURPOSE: Investigation of effects on DNA of γ-irradiated human cancer cells pretreated with free radical scavengers is aimed to create reference data which would enable assessment of the relative efficiency of high linear energy transfer (LET) radiations used in hadron therapy, i.e. protons and carbon ions. MATERIALS AND METHODS: MCF-7 breast and HTB177 lung cancer cells are irradiated with γ-rays. To minimize indirect effects of irradiation, dimethyl sulfoxide (DMSO) or glycerol are applied as free radical scavengers. Biological response to irradiation is evaluated through clonogenic cell survival, immunocytochemical and cell cycle analysis, as well as expression of proteins involved in DNA damage response. RESULTS: Examined cell lines reveal similar level of radioresistance. Application of scavengers leads to the rise of cell survival and decreases the number of DNA double strand breaks in irradiated cells. Differences in cell cycle and protein expression between the two cell lines are probably caused by different DNA damage repair mechanisms that are activated. CONCLUSION: The obtained results show that DMSO and glycerol have good scavenging capacity, and may be used to minimize DNA damage induced by free radicals. Therefore, they will be used as the reference for comparison with high LET irradiations, as well as good experimental data suitable for validation of numerical simulations.


Assuntos
Neoplasias da Mama/patologia , Dano ao DNA , Sequestradores de Radicais Livres/farmacologia , Raios gama , Neoplasias Pulmonares/patologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Humanos , Células MCF-7
16.
Exp Biol Med (Maywood) ; 242(10): 1015-1024, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27633574

RESUMO

The aim of this study was to investigate effects of irradiations with the therapeutic proton and carbon ion beams in two non-small cell lung cancers, CRL5876 adenocarcinoma and HTB177 large cell lung carcinoma. The DNA damage response dynamics, cell cycle regulation, and cell death pathway activation were followed. Viability of both cell lines was lower after carbon ions compared to the therapeutic proton irradiations. HTB177 cells showed higher recovery than CRL5876 cells seven days following the treatments, but the survival rates of both cell lines were lower after exposure to carbon ions with respect to therapeutic protons. When analyzing cell cycle distribution of both CRL5876 and HTB177 cells, it was noticed that therapeutic protons predominantly induced G1 arrest, while the cells after carbon ions were arrested in G2/M phase. The results illustrated that differences in the levels of phosphorylated H2AX, a double-strand break marker, exist after therapeutic proton and carbon ion irradiations. We also observed dose- and time-dependent increase in the p53 and p21 levels after applied irradiations. Carbon ions caused larger increase in the quantity of p53 and p21 compared to therapeutic protons. These results suggested that various repair mechanisms were induced in the treated cells. Considering the fact that we have not observed any distinct change in the Bax/Bcl-2 ratio following irradiations, it seemed that different types of cell death were involved in the response to the two types of irradiations that were applied.


Assuntos
Carbono/farmacologia , Linhagem Celular Tumoral/efeitos da radiação , Íons/farmacologia , Prótons , Tolerância a Radiação , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA , Humanos
17.
An Acad Bras Cienc ; 88(1): 127-36, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26959322

RESUMO

Ionizing radiation induces DNA double strand breaks (DSBs) that trigger phosphorylation of the histone protein H2AX (γH2AX). Immunofluorescent staining visualizes formation of γH2AX foci, allowing their quantification. This method, as opposed to Western blot assay and Flow cytometry, provides more accurate analysis, by showing exact position and intensity of fluorescent signal in each single cell. In practice there are problems in quantification of γH2AX. This paper is based on two issues: the determination of which technique should be applied concerning the radiation dose, and how to analyze fluorescent microscopy images obtained by different microscopes. HTB140 melanoma cells were exposed to γ-rays, in the dose range from 1 to 16 Gy. Radiation effects on the DNA level were analyzed at different time intervals after irradiation by Western blot analysis and immunofluorescence microscopy. Immunochemically stained cells were visualized with two types of microscopes: AxioVision (Zeiss, Germany) microscope, comprising an ApoTome software, and AxioImagerA1 microscope (Zeiss, Germany). Obtained results show that the level of γH2AX is time and dose dependent. Immunofluorescence microscopy provided better detection of DSBs for lower irradiation doses, while Western blot analysis was more reliable for higher irradiation doses. AxioVision microscope containing ApoTome software was more suitable for the detection of γH2AX foci.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Relação Dose-Resposta à Radiação , Histonas/efeitos da radiação , Melanoma/radioterapia , Radiometria/métodos , Western Blotting , Linhagem Celular Tumoral/efeitos da radiação , Humanos , Microscopia de Fluorescência , Fosforilação
18.
Cell Biol Toxicol ; 32(2): 83-101, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27026538

RESUMO

In most patients with lung cancer radiation treatment is used either as single agent or in combination with radiosensitizing drugs. However, the mechanisms underlying combined therapy and its impact on different modes of cell death have not yet been fully elucidated. We aimed to examine effects of single and combined treatments with γ-rays and erlotinib on radioresistant CRL-5876 human lung adenocarcinoma cells with particular emphasis on cell death. CRL-5876 cells were treated with γ-rays and/or erlotinib and changes in cell cycle, DNA repair dynamics, ultrastructure, nuclear morphology and protein expression were monitored at different time points. To reveal the relationship between types of cell death that arise after these treatments, autophagy was blocked with chloroquine. We found that higher dose of γ-rays causes G2/M arrest while adding of erlotinib to this treatment decreases the number of cells in S phase. Impact of erlotinib on kinetics of disappearance of irradiation-induced DNA double strand breaks is reflected in the increase of residual γ-H2AX foci after 24 h. γ-rays provoke cytoprotective autophagy which precedes development of senescence. Erlotinib predominantly induces apoptosis and enlarges the number of apoptotic cells in the irradiated CRL-5876 cells. Chloroquine improved cytotoxicity induced by radiation and erlotinib, increased apoptosis and decreased senescence in the CRL-5876 cells. The results obtained on CRL-5876 cells indicate significant radiosensitizing effect of erlotinib and suggest that chloroquine in the combination with the above treatments may have an additional antitumor effect in lung adenocarcinoma.


Assuntos
Adenocarcinoma/terapia , Cloridrato de Erlotinib/farmacologia , Raios gama/uso terapêutico , Neoplasias Pulmonares/terapia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Adenocarcinoma/radioterapia , Adenocarcinoma de Pulmão , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Cloroquina/farmacologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia
19.
Arch Med Sci ; 10(3): 578-86, 2014 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-25097591

RESUMO

INTRODUCTION: Proton radiation offers physical advantages over conventional radiation. Radiosensitivity of human 59M ovarian cancer and HTB140 melanoma cells was investigated after exposure to γ-rays and protons. MATERIAL AND METHODS: Irradiations were performed in the middle of a 62 MeV therapeutic proton spread out Bragg peak with doses ranging from 2 to 16 Gy. The mean energy of protons was 34.88 ±2.15 MeV, corresponding to the linear energy transfer of 4.7 ±0.2 keV/µm. Irradiations with γ-rays were performed using the same doses. Viability, proliferation and survival were assessed 7 days after both types of irradiation while analyses of cell cycle and apoptosis were performed 48 h after irradiation. RESULTS: Results showed that γ-rays and protons reduced the number of viable cells for both cell lines, with stronger inactivation achieved after irradiation with protons. Surviving fractions for 59M were 0.91 ±0.01 for γ-rays and 0.81 ±0.01 for protons, while those for HTB140 cells were 0.93 ±0.01 for γ-rays and 0.86 ±0.01 for protons. Relative biological effectiveness of protons, being 2.47 ±0.22 for 59M and 2.08 ±0.36 for HTB140, indicated that protons provoked better cell elimination than γ-rays. After proton irradiation proliferation capacity of the two cell lines was slightly higher as compared to γ-rays. Proliferation was higher for 59M than for HTB140 cells after both types of irradiation. Induction of apoptosis and G2 arrest detected after proton irradiation were more prominent in 59M cells. CONCLUSIONS: The obtained results suggest that protons exert better antitumour effects on ovarian carcinoma and melanoma cells than γ-rays. The dissimilar response of these cells to radiation is related to their different features.

20.
Radiat Prot Dosimetry ; 143(2-4): 503-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21183545

RESUMO

Response of human HTB140 melanoma cells to proton irradiation in combination with fotemustine (FM) was investigated. Effects of these agents were analysed on cell proliferation and induction of apoptosis. Cells pretreated with 100- or 250-µM of FM were irradiated in the middle of the therapeutic 62-MeV proton spread-out Bragg peak, with a dose of 16 Gy. All treatments reduced proliferation and survival of melanoma cells. The most pronounced effects of the combined treatment were obtained for cell survivals. The level of apoptosis increased after all applied treatments. Particularly good pro-apoptotic effect was achieved when proton irradiation was combined with 250 µM of FM. This was followed by the increased expression of p53 gene. The obtained results have shown that combined application of FM and protons significantly reduced growth of this resistant melanoma cell line.


Assuntos
Antineoplásicos/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Melanoma/tratamento farmacológico , Melanoma/radioterapia , Compostos de Nitrosoureia/administração & dosagem , Compostos Organofosforados/administração & dosagem , Linhagem Celular Tumoral , Terapia Combinada , Humanos , Melanoma/patologia , Terapia com Prótons , Tolerância a Radiação/efeitos dos fármacos , Radioterapia Conformacional/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA