Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(20): e2319641121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709918

RESUMO

One of the largest sex differences in brain neurochemistry is the expression of the neuropeptide arginine vasopressin (AVP) within the vertebrate brain, with males having more AVP cells in the bed nucleus of the stria terminalis (BNST) than females. Despite the long-standing implication of AVP in social and anxiety-like behaviors, the circuitry underlying AVP's control of these behaviors is still not well defined. Using optogenetic approaches, we show that inhibiting AVP BNST cells reduces social investigation in males, but not in females, whereas stimulating these cells increases social investigation in both sexes, but more so in males. These cells may facilitate male social investigation through their projections to the lateral septum (LS), an area with the highest density of sexually differentiated AVP innervation in the brain, as optogenetic stimulation of BNST AVP → LS increased social investigation and anxiety-like behavior in males but not in females; the same stimulation also caused a biphasic response of LS cells ex vivo. Blocking the vasopressin 1a receptor (V1aR) in the LS eliminated all these responses. Together, these findings establish a sexually differentiated role for BNST AVP cells in the control of social investigation and anxiety-like behavior, likely mediated by their projections to the LS.


Assuntos
Ansiedade , Arginina Vasopressina , Comportamento Social , Animais , Feminino , Masculino , Camundongos , Ansiedade/metabolismo , Arginina Vasopressina/metabolismo , Comportamento Animal/fisiologia , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Optogenética , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Núcleos Septais/metabolismo , Núcleos Septais/fisiologia
2.
bioRxiv ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37986987

RESUMO

One of the largest sex differences in brain neurochemistry is the male-biased expression of the neuropeptide arginine vasopressin (AVP) within the vertebrate social brain. Despite the long-standing implication of AVP in social and anxiety-like behavior, the precise circuitry and anatomical substrate underlying its control are still poorly understood. By employing optogenetic manipulation of AVP cells within the bed nucleus of the stria terminalis (BNST), we have unveiled a central role for these cells in promoting social investigation, with a more pronounced role in males relative to females. These cells facilitate male social investigation and anxiety-like behavior through their projections to the lateral septum (LS), an area with the highest density of sexually-dimorphic AVP fibers. Blocking the vasopressin 1a receptor (V1aR) in the LS eliminated stimulation-mediated increases in these behaviors. Together, these findings establish a distinct BNST AVP → LS V1aR circuit that modulates sex-specific social interest and anxiety-like behavior.

3.
Horm Behav ; 154: 105407, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523807

RESUMO

Steroid-sensitive vasopressin (AVP) neurons in the bed nucleus of the stria terminalis (BNST) and medial amygdala (MeA) have been implicated in the control of social behavior, but the connectional architecture of these cells is not well understood. Here we used a modified rabies virus (RV) approach to identify cells that provide monosynaptic input to BNST and MeA AVP cells, and an adeno-associated viral (AAV) anterograde tracer strategy to map the outputs of these cells. Although the location of in- and outputs of these cells generally overlap, we observed several sex differences with differences in density of outputs typically favoring males, but the direction of sex differences in inputs vary based on their location. Moreover, the AVP cells located in both the BNST and MeA are in direct contact with each other suggesting that AVP cells in these two regions act in a coordinated manner, and possibly differently by sex. This study represents the first comprehensive mapping of the sexually dimorphic and steroid-sensitive AVP neurons in the mouse brain.


Assuntos
Complexo Nuclear Corticomedial , Núcleos Septais , Camundongos , Animais , Feminino , Masculino , Núcleos Septais/metabolismo , Caracteres Sexuais , Vasopressinas/metabolismo , Neurônios/metabolismo , Complexo Nuclear Corticomedial/metabolismo , Arginina Vasopressina/metabolismo
4.
Front Endocrinol (Lausanne) ; 14: 1127792, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860367

RESUMO

The neuropeptide arginine-vasopressin (AVP) is well known for its peripheral effects on blood pressure and antidiuresis. However, AVP also modulates various social and anxiety-related behaviors by its actions in the brain, often sex-specifically, with effects typically being stronger in males than in females. AVP in the nervous system originates from several distinct sources which are, in turn, regulated by different inputs and regulatory factors. Based on both direct and indirect evidence, we can begin to define the specific role of AVP cell populations in social behavior, such as, social recognition, affiliation, pair bonding, parental behavior, mate competition, aggression, and social stress. Sex differences in function may be apparent in both sexually-dimorphic structures as well as ones without prominent structural differences within the hypothalamus. The understanding of how AVP systems are organized and function may ultimately lead to better therapeutic interventions for psychiatric disorders characterized by social deficits.


Assuntos
Arginina Vasopressina , Vasopressinas , Humanos , Feminino , Masculino , Comportamento Social , Agressão , Ansiedade/tratamento farmacológico
5.
Endocrinology ; 163(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35863332

RESUMO

Oxytocin and vasopressin are peptide hormones secreted from the pituitary that are well known for their peripheral endocrine effects on childbirth/nursing and blood pressure/urine concentration, respectively. However, both peptides are also released in the brain, where they modulate several aspects of social behaviors. Oxytocin promotes maternal nurturing and bonding, enhances social reward, and increases the salience of social stimuli. Vasopressin modulates social communication, social investigation, territorial behavior, and aggression, predominantly in males. Both peptides facilitate social memory and pair bonding behaviors in monogamous species. Here we review the latest research delineating the neural circuitry of the brain oxytocin and vasopressin systems and summarize recent investigations into the circuit-based mechanisms modulating social behaviors. We highlight research using modern molecular genetic technologies to map, monitor activity of, or manipulate neuropeptide circuits. Species diversity in oxytocin and vasopressin effects on social behaviors are also discussed. We conclude with a discussion of the translational implications of oxytocin and vasopressin for improving social functioning in disorders with social impairments, such as autism spectrum disorder.


Assuntos
Transtorno do Espectro Autista , Ocitocina , Animais , Humanos , Masculino , Ligação do Par , Receptores de Ocitocina , Comportamento Social , Vasopressinas
6.
J Neuroendocrinol ; 34(9): e13083, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34978098

RESUMO

The neuropeptide arginine-vasopressin (AVP) has long been implicated in the regulation of social behaviour and communication, but the sources of AVP release relevant for behaviour have not been precisely determined. Ablations of the sexually dimorphic AVP cells within the bed nucleus of the stria terminalis (BNST), which are more numerous in males, affect social behaviour differently in males and females. However, it is unknown whether these behavioural effects are caused by a reduction of AVP or of other factors associated with these cells. To test the role of AVP specifically, we used an shRNA viral construct to knock down AVP gene expression within the BNST of wild-type male and female mice, using scrambled sequence virus as a control, and evaluated subsequent changes in social behaviours (social investigation, ultrasonic vocalization (USV), scent marking, copulation, and aggression), or anxiety-like behaviours (elevated plus maze). We observed that, in males, knockdown of AVP expression in the BNST strongly reduced investigation of novel males, aggressive signalling towards other males (tail rattling, USV), and copulatory behaviour, but did not alter attack initiation, other measures of social communication, or anxiety-like behaviours. In females, however, BNST AVP knockdown did not alter any of these behaviours. These results point to differential involvement of AVP derived from the BNST in social behaviour.


Assuntos
Núcleos Septais , Animais , Arginina/metabolismo , Arginina Vasopressina/genética , Arginina Vasopressina/metabolismo , Feminino , Masculino , Camundongos , RNA Interferente Pequeno/metabolismo , Núcleos Septais/metabolismo , Vasopressinas/genética , Vasopressinas/metabolismo
7.
Horm Behav ; 133: 104997, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34062279

RESUMO

Central vasopressin (AVP) has been implicated in the control of multiple behaviors, including social behavior, anxiety-like behavior, and sickness behavior. The extent to which the different AVP-producing cell groups contribute to regulating these behaviors has not been extensively investigated. Here we test the role of AVP cells in the suprachiasmatic nucleus (SCN) in these behaviors by ablating these cells using viral-mediated, Cre-dependent caspase in male and female AVP-Cre + mice and Cre-controls. We compared anxiety and social behaviors, as well as sickness behaviors (lethargy, anhedonia (indexed by sucrose consumption), and changes in anxiety-like- and social behavior) induced via injection of bacterial lipopolysaccharide (LPS). We found that SCN AVP cell ablation increased anxiety-like behavior and sucrose consumption in both sexes, as well as increased urine marking by males in a non-social context, but did not alter behavioral responses to sickness. Our data suggest that SCN AVP does not strongly affect LPS-induced behavioral changes, but may contribute to anxiety-like behavior, and may play a role in ingestive reward/motivation and fluid intake.


Assuntos
Arginina Vasopressina , Núcleo Supraquiasmático , Animais , Ansiedade , Arginina Vasopressina/metabolismo , Ritmo Circadiano , Feminino , Masculino , Camundongos , Comportamento Social , Núcleo Supraquiasmático/metabolismo , Vasopressinas/metabolismo
8.
J Neuroendocrinol ; 33(1): e12915, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33617060

RESUMO

Vasopressin (AVP) cells in the paraventricular nucleus of the hypothalamus (PVN) are activated during sickness and project to multiple nuclei responsible for the anxiety, social and motivated behaviours affected during sickness, suggesting that these cells may play a role in sickness behaviours, typically expressed as reduced mobility, increased anxiety, anhedonia and social withdrawal. In the present study, we selectively ablated AVP neurones in the PVN of male and female mice (Mus musculus) and induced sickness behaviour via injection of bacterial lipopolysaccharide (LPS). We found that PVN AVP ablation increased the effects of LPS, specifically by further decreasing sucrose preference in males and females and decreasing the social preference of males, monitored within 24 hours of LPS injection. These results suggest that PVN AVP contributes to the change in motivated behaviours during sickness and may help promote recovery from infection..


Assuntos
Comportamento Animal/efeitos dos fármacos , Comportamento de Doença/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Vasopressinas/metabolismo , Animais , Comportamento Animal/fisiologia , Feminino , Comportamento de Doença/fisiologia , Masculino , Camundongos , Comportamento Social
9.
Neuroendocrinology ; 111(6): 521-535, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32541145

RESUMO

The neuropeptide arginine-vasopressin (AVP) has long been implicated in the regulation of social behavior and communication in diverse taxa, but the source of AVP release relevant for behavior has not been precisely determined. Potential sources include hypothalamic cell populations such as the paraventricular (PVN), supraoptic, and suprachiasmatic nuclei, as well as extrahypothalamic cell groups in the extended amygdala. To address if AVP-expressing cells in the PVN are important for mouse social communication, we deleted PVN AVP-expressing cells using viral-mediated delivery of Cre-dependent caspase-9 cell death construct into the PVN of AVP-Cre-positive mice (expressing Cre-recombinase under the control of the AVP promoter) or AVP-Cre-negative littermate controls, and assessed their levels of social investigation, social communication, anxiety, sex behavior, and aggressive behavior. We found that these lesions increased social investigation in females, but not in males. However, in males but not in females, these lesions increased non-social anxiety-related behaviors in the elevated-plus maze. These results therefore point at differential involvement of PVN AVP-expressing cells in the context of social and emotional behavior in the two sexes, which may contribute to sex differences in social communication and anxiety disorders.


Assuntos
Agressão/fisiologia , Ansiedade/fisiopatologia , Arginina Vasopressina/metabolismo , Comportamento Animal/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Caracteres Sexuais , Comportamento Social , Animais , Feminino , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Núcleo Hipotalâmico Paraventricular/metabolismo , Comportamento Sexual Animal/fisiologia
10.
Horm Behav ; 121: 104715, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32067962

RESUMO

The neuropeptide arginine-vasopressin (AVP) has long been implicated in the regulation of social behavior and communication in diverse taxa, often through its actions on the V1a receptor (V1aR) and in a sex-different and steroid-dependent way. One source of sex-different brain AVP is the steroid-sensitive and sexually-dimorphic AVP neurons in the bed nucleus of the stria terminalis (BNST), a cell population that regulates social behavior in a sex-dependent manner. Potential targets of these BNST-AVP cells include the lateral habenula (LHb) and dorsal raphe (DR), areas known to be important for social behavior, yet few studies have investigated AVP action within these regions. Consequently, to test if V1aR action in the LHb or DR controls social behavior in a sexually dimorphic manner, we administered a highly-specific V1aR antagonist (or saline vehicle) in the LHb or DR of C57BL/6 male and female mice and tested its effects on social investigation, social communication (urine marking, ultrasonic vocalizations), and territorial aggression. V1aR antagonism of the LHb or DR decreased male urine marking toward unfamiliar males, but not toward unfamiliar females. Additionally, V1aR blockade of the LHb decreased ultrasonic vocalizations generated in the presence of females. Social investigation, locomotion and aggressive behavior were not altered by V1aR antagonism in either area. Blocking V1aR in the LHb or DR of females had no effect, indicating V1aR action in the DR and LHb drives sex differences in social communication.


Assuntos
Comunicação , Núcleo Dorsal da Rafe/metabolismo , Habenula/metabolismo , Receptores de Vasopressinas/metabolismo , Comportamento Social , Agressão/psicologia , Animais , Arginina Vasopressina/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Receptores de Vasopressinas/fisiologia , Núcleos Septais/metabolismo , Caracteres Sexuais , Vasopressinas/metabolismo
11.
Brain Behav Immun ; 83: 68-77, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550501

RESUMO

Circumstantial evidence supports the hypothesis that the sexually dimorphic vasopressin (AVP) innervation of the brain tempers sickness behavior in males. Here we test this hypothesis directly, by comparing sickness behavior in animals with or without ablations of BNST AVP cells, a major source of sexually dimorphic AVP in the brain. We treated male and female AVP-iCre+ and AVP-iCre- mice that had been injected with viral Cre-dependent caspase-3 executioner construct into the BNST with lipopolysaccharide (LPS) or sterile saline, followed by behavioral analysis. In all groups, LPS treatment reliably reduced motor behavior, increased anxiety-related behavior, and reduced sucrose preference and consumption. Male mice, whose BNST AVP cells had been ablated (AVP-iCre+), displayed only minor reductions in LPS-induced sickness behavior, whereas their female counterparts displayed, if anything, an increase in sickness behaviors. All saline-treated mice with BNST AVP cell ablations consumed more sucrose than did control mice, and males, but not females, with BNST AVP cell ablations showed reduced preference for novel conspecifics compared to control mice. These data confirm that BNST AVP cells control social behavior in a sexually dimorphic way, but do not play a critical role in altering sickness behavior.


Assuntos
Arginina Vasopressina/metabolismo , Encéfalo/citologia , Caracteres Sexuais , Comportamento Social , Animais , Encéfalo/metabolismo , Ingestão de Alimentos , Feminino , Masculino , Camundongos , Sacarose/metabolismo
12.
eNeuro ; 6(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-30693316

RESUMO

The neuropeptide arginine vasopressin (AVP) has long been implicated in the regulation of social behavior and communication, but precisely which AVP cell groups are involved is largely unknown. To address whether the sexually dimorphic AVP cell group in the bed nucleus of the stria terminalis (BNST) is important for social communication, we deleted BNST AVP cells by viral delivery of a Cre-dependent caspase-3 cell-death construct in AVP-iCre-positive mice using AVP-iCre negative littermate as controls, and assessed social, sexual, aggressive and anxiety-related behaviors. In males, lesioning BNST AVP cells reduced social investigation of other males and increased urine marking (UM) in the presence of a live female, without altering ultrasonic vocalizations (USVs), resident-intruder aggression, copulatory behavior, anxiety, or investigation of females or their odor cues. In females, which have significantly fewer AVP cells in the BNST, these injections influenced copulatory behavior but otherwise had minimal effects on social behavior and communication, indicating that these cells contribute to sex differences in social behavioral function.


Assuntos
Comunicação Animal , Comportamento Exploratório/fisiologia , Núcleos Septais/fisiologia , Caracteres Sexuais , Comportamento Social , Vasopressinas/metabolismo , Animais , Ansiedade/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Neurônios/fisiologia , Percepção Olfatória/fisiologia , Reprodução/fisiologia
14.
Horm Behav ; 68: 1-2, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25497416
15.
Horm Behav ; 64(4): 653-64, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24012945

RESUMO

Successful reproduction in mammals depends on proceptive or solicitational behaviors that enhance the probability of encountering potential mates. In female Syrian hamsters, one such behavior is vaginal scent marking. Recent evidence suggests that the neuropeptide oxytocin (OT) may be critical for regulating this behavior. Blockade of OT receptors in the bed nucleus of the stria terminalis (BNST) or the medial preoptic area (MPOA) decreases vaginal marking responses to male odors; lesion data suggest that BNST, rather than MPOA, mediates this effect. However, how OT interacts with sexual odor processing to drive preferential solicitation is not known. To address this issue, intact female Syrian hamsters were exposed to male or female odors and their brains processed for immunohistochemistry for Fos, a marker of recent neuronal activation, and OT. Additional females were injected intracerebroventricularly (ICV) with an oxytocin receptor antagonist (OTA) or vehicle, and then tested for vaginal marking and Fos responses to sexual odors. Colocalization of OT and Fos in the paraventricular nucleus of the hypothalamus was unchanged following exposure to male odors, but decreased following exposure to female odors. Following injections of OTA, Fos expression to male odors was decreased in BNST, but not in MPOA or the medial amygdala (MA). Fos expression in BNST may be functionally relevant for vaginal marking, given that there was a positive correlation between Fos expression and vaginal marking for BNST, but not MPOA or MA. Together, these data suggest that OT facilitation of neuronal activity in BNST underlies the facilitative effects of OT on solicitational responses to male odors.


Assuntos
Genes fos/efeitos dos fármacos , Ocitocina/fisiologia , Núcleos Septais/efeitos dos fármacos , Núcleos Septais/metabolismo , Atrativos Sexuais/farmacologia , Animais , Cricetinae , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Mesocricetus , Odorantes , Proteínas Proto-Oncogênicas c-fos/metabolismo
16.
Front Neuroendocrinol ; 34(4): 255-67, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23911848

RESUMO

Males and females of most mammalian species depend on chemosignals to find, attract and evaluate mates and, in most cases, these appetitive sexual behaviors are strongly modulated by activational and organizational effects of sex steroids. The neural circuit underlying chemosensory-mediated pre- and peri-copulatory behavior involves the medial amygdala (MA), the bed nucleus of the stria terminalis (BNST), medial preoptic area (MPOA) and ventromedial hypothalamus (VMH), each area being subdivided into interconnected chemoreceptive and hormone-sensitive zones. For males, MA-BNST connections mediate chemoinvestigation whereas the MA-MPOA pathway regulates copulatory initiation. For females, MA-MPOA/BNST connections also control aspects of precopulatory behavior whereas MA-VMH projections control both precopulatory and copulatory behavior. Significant gaps in understanding remain, including the role of VMH in male behavior and MPOA in female appetitive behavior, the function of cortical amygdala, the underlying chemical architecture of this circuit and sex differences in hormonal and neurochemical regulation of precopulatory behavior.


Assuntos
Encéfalo/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Feromônios Humano/metabolismo , Atrativos Sexuais/metabolismo , Comportamento Sexual/fisiologia , Animais , Humanos , Neurônios/metabolismo
17.
Horm Behav ; 63(5): 723-41, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23545474

RESUMO

Many mammalian species use chemosignals to coordinate reproduction by altering the physiology and behavior of both sexes. Chemosignals prime reproductive physiology so that individuals become sexually mature and active at times when mating is most probable and suppress it when it is not. Once in reproductive condition, odors produced and deposited by both males and females are used to find and select individuals for mating. The production, dissemination and appropriate responses to these cues are modulated heavily by organizational and activational effects of gonadal sex steroids and thereby intrinsically link chemical communication to the broader reproductive context. Many compounds have been identified as "pheromones" but very few have met the expectations of that term: a unitary, species-typical substance that is both necessary and sufficient for an experience-independent behavioral or physiological response. In contrast, most responses to chemosignals are dependent or heavily modulated by experience, either in adulthood or during development. Mechanistically, chemosignals are perceived by both main and accessory (vomeronasal) olfactory systems with the importance of each system tied strongly to the nature of the stimulus rather than to the response. In the central nervous system, the vast majority of responses to chemosignals are mediated by cortical and medial amygdala connections with hypothalamic and other forebrain structures. Despite the importance of chemosignals in mammals, many details of chemical communication differ even among closely related species and defy clear categorization. Although generating much research and public interest, strong evidence for the existence of a robust chemical communication among humans is lacking.


Assuntos
Hormônios Esteroides Gonadais/fisiologia , Mamíferos/fisiologia , Feromônios/fisiologia , Reprodução/fisiologia , Comportamento Sexual Animal/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Feminino , Humanos , Masculino , Condutos Olfatórios/fisiologia , Feromônios Humano/fisiologia
18.
Horm Behav ; 63(4): 606-14, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23415835

RESUMO

Precopulatory behaviors that are preferentially directed towards opposite-sex conspecifics are critical for successful reproduction, particularly in species wherein the sexes live in isolation, such as Syrian hamsters (Mesocricetus auratus). In females, these behaviors include sexual odor preference and vaginal scent marking. The neural regulation of precopulatory behaviors is thought to involve a network of forebrain areas that includes the medial amygdala (MA), the bed nucleus of the stria terminalis (BNST), and the medial preoptic area (MPOA). Although MA and BNST are necessary for sexual odor preference and preferential vaginal marking to male odors, respectively, the role of MPOA in odor-guided female precopulatory behaviors is not well understood. To address this issue, female Syrian hamsters with bilateral, excitotoxic lesions of MPOA (MPOA-X) or sham lesions (SHAM) were tested for sexual odor investigation, scent marking, and lordosis. MPOA-X females did not investigate male odors more than female odors in an odor preference test, indicating that MPOA may be necessary for normal sexual odor preference in female hamsters. This loss of preference cannot be attributed to a sensory deficit, since MPOA-X females successfully discriminated male odors from female odors during an odor discrimination test. Surprisingly, no deficits in vaginal scent marking were observed in MPOA-X females, although these females did exhibit decreased overall levels of flank marking compared to SHAM females. Finally, all MPOA-X females exhibited lordosis appropriately. These results suggest that MPOA plays a critical role in the neural regulation of certain aspects of odor-guided precopulatory behaviors in female Syrian hamsters.


Assuntos
Área Pré-Óptica/fisiologia , Atrativos Sexuais , Comportamento Sexual Animal/fisiologia , Animais , Comportamento Apetitivo , Cricetinae , Interpretação Estatística de Dados , Discriminação Psicológica/fisiologia , Ciclo Estral/fisiologia , Feminino , Imuno-Histoquímica , Mesocricetus , Odorantes
19.
Horm Behav ; 62(1): 50-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22565217

RESUMO

Male rat copulation is mediated by estrogen-sensitive neurons in the medial preoptic area (MPO) and medial amygdala (MEA); however, the mechanisms through which estradiol (E(2)) acts are not fully understood. We hypothesized that E(2) acts through estrogen receptor α (ERα) in the MPO and MEA to promote male mating behavior. Antisense oligodeoxynucleotides (AS-ODN) complementary to ERα mRNA were bilaterally infused via minipumps into either brain area to block the synthesis of ERα, which we predicted would reduce mating. Western blot analysis and immunocytochemistry revealed a knockdown of ERα expression in each brain region; however, compared to saline controls, males receiving AS-ODN to the MPO showed significant reductions in all components of mating, whereas males receiving AS-ODN to the MEA continued to mate normally. These results suggest that E(2) acts differently in these brain regions to promote the expression of male rat sexual behavior and that ERα in the MPO, but not in the MEA, promotes mating.


Assuntos
Tonsila do Cerebelo/fisiologia , Copulação/fisiologia , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Área Pré-Óptica/fisiologia , Ratos Sprague-Dawley/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Copulação/efeitos dos fármacos , Estradiol/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Feminino , Masculino , Oligodesoxirribonucleotídeos Antissenso/genética , Área Pré-Óptica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley/genética
20.
Horm Behav ; 61(2): 204-11, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22210198

RESUMO

In many species, including Syrian hamsters, the generation of male reproductive behavior depends critically on the perception of female odor cues from conspecifics in the environment. The behavioral response to these odors is mediated by a network of steroid-sensitive ventral forebrain nuclei including the medial amygdala (MA), posterior bed nucleus of the stria terminalis (BNST) and medial preoptic area (MPOA). Previous studies have demonstrated that each of these three nuclei is required for appropriate sexual behavior and that MA preferentially sends female odor information directly to BNST and MPOA. It is unknown, however, how the functional connections between MA and BNST and/or MPOA are organized to generate different aspects of reproductive behavior. Therefore, the following experiments used the asymmetrical pathway lesion technique to test the role of the functional connections between MA and BNST and/or MPOA in odor preference and copulatory behaviors. Lesions that functionally disconnected MA from MPOA eliminated copulatory behavior but did not affect odor preference. In contrast, lesions that functionally disconnected MA from BNST eliminated preference for volatile female odors but did not affect preference for directly contacted odors or copulatory behavior. These results therefore demonstrate a double dissociation in the functional connections required for attraction to volatile sexual odors and copulation and, more broadly, suggest that appetitive and consummatory reproductive behaviors are mediated by distinct neural pathways.


Assuntos
Tonsila do Cerebelo/fisiologia , Percepção Olfatória/fisiologia , Área Pré-Óptica/fisiologia , Núcleos Septais/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Comportamento Apetitivo/fisiologia , Copulação/fisiologia , Cricetinae , Feminino , Masculino , Mesocricetus , Vias Neurais/fisiologia , Odorantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA