Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36769901

RESUMO

The article describes the Ti3SiC2 powder synthesis process. The influence of the molar ratio and two forms of carbon on the phase composition of the obtained powders was investigated. The synthesis was carried out using a spark plasma sintering (SPS) furnace. In addition, using the obtained powders, composites reinforced with SiC particles were produced. The obtained results showed no effect of the carbon form and a significant impact of annealing on the purity of the powders after synthesis. The composites were also consolidated using an SPS furnace at two temperatures of 1300 and 1400 °C. The tests showed low density and hardness for sinters from 1300 °C (maximum 3.97 g/cm3 and 447 HV5, respectively, for composite reinforced with 10% SiC). These parameters significantly increase for composites sintered at 1400 °C (maximum density 4.43 g/cm3 and hardness 1153 HV5, for Ti3AlC2-10% SiC). In addition, the crack propagation analysis showed mechanisms typical for granular materials and laminates.

2.
Materials (Basel) ; 15(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36234250

RESUMO

This article describes the manufacturing of alumina composites with the addition of titanium aluminum carbide Ti3AlC2, known as MAX phases. The composites were obtained by the powder metallurgy technique with three types of mill (horizontal mill, attritor mill, and planetary mill), and were consolidated with the use of the Spark Plasma Sintering method at 1400 °C, with dwelling time 10 min. The influence of the Ti3AlC2 MAX phase addition on the microstructure and mechanical properties of the obtained composites was analyzed. The structure of the MAX phase after the sintering process was also investigated. The chemical composition and phase composition analysis showed that the Ti3AlC2 addition preserved its structure after the sintering process. The increase in fracture toughness for all series of composites has been noted (over 20% compared to reference samples). Detailed stereological analysis of the obtained microstructures also could determine the influence of the applied mill on the homogeneity of the final microstructure and the properties of obtained composites.

3.
Materials (Basel) ; 15(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35161116

RESUMO

This article presents an attempt to determine the effect of the MXene phase addition and its decomposition during sintering with the use of the spark plasma sintering method on mechanical properties and residual stress of silicon carbide based composites. For this purpose, the unreinforced silicon carbide sinter and the silicon carbide composite with the addition of 2 wt.% of Ti3C2Tx were tested. The results showed a significant increase of fracture toughness and hardness for composite, respectively 36% and 13%. The numerical study involving this novel method of modelling shows the presence of a complex state of stress in the material, which is related to the anisotropic properties of graphitic carbon structures formed during sintering. An attempt to determine the actual values of residual stress in the tested materials using Raman spectroscopy was also made. These tests showed a good correlation with the constructed numerical model and confirmed the presence of a complex state of residual stress.

4.
Materials (Basel) ; 14(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34683603

RESUMO

This paper discusses the effects of the environment and temperature of the Ti3C2 (MXene) oxidation process. The MXene powders were annealed at temperatures of 1000, 1200, 1400, 1600, and 1800 °C in argon and vacuum using a Spark Plasma Sintering (SPS) furnace. The purpose of the applied annealing method was to determine the influence of a high heating rate on the MXene degradation scheme. Additionally, to determine the thermal stability of MXene during the sintering of SiC matrix composites, SiC-C-B-Ti3C2 powder mixtures were also annealed. The process parameters were as follows: Temperatures of 1400 and 1600 °C, and pressure of 30 MPa in a vacuum. Observations of the microstructure showed that, due to annealing of the SiC-C-B-Ti3C2 powder mixtures, porous particles are formed consisting of TiC, Ti3C2sym, and amorphous carbon. The formation of porous particles is a transitional stage in the formation of disordered carbon structures.

5.
Materials (Basel) ; 14(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202128

RESUMO

This article presents new findings related to the problem of the introduction of MXene phases into the silicon carbide matrix. The addition of MXene phases, as shown by the latest research, can significantly improve the mechanical properties of silicon carbide, including fracture toughness. Low fracture toughness is one of the main disadvantages that significantly limit its use. As a part of the experiment, two series of composites were produced with the addition of 2D-Ti3C2Tx MXene and 2D-Ti3C2Tx surface-modified MXene with the use of the sol-gel method with a mixture of Y2O3/Al2O3 oxides. The composites were obtained with the powder metallurgy technique and sintered with the Spark Plasma Sintering method at 1900 °C. The effect adding MXene phases had on the mechanical properties and microstructure of the produced sinters was investigated. Moreover, the influence of the performed surface modification on changes in the properties of the produced composites was determined. The analysis of the obtained results showed that during sintering, the MXene phases oxidize with the formation of carbon flakes playing the role of reinforcement. The influence of the Y2O3/Al2O3 layer on the structure of carbon flakes and the higher quality of the interface was also demonstrated. This was reflected in the higher mechanical properties of composites with the addition of modified Ti3C2Tx. Composites with 1 wt.% addition of Ti3C2Tx M are characterized with a fracture toughness of 5 MPa × m0.5, which is over 50% higher than in the case of the reference sample and over 15% higher than for the composite with 2.5 wt.% addition of Ti3C2Tx, which showed the highest fracture toughness in this series.

6.
Materials (Basel) ; 14(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578629

RESUMO

This study presents new findings related to the incorporation of MXene phases into ceramic. Aluminium oxide and synthesised Ti3C2 were utilised as starting materials. Knowing the tendency of MXenes to oxidation and degradation, particularly at higher temperatures, structural modifications were proposed. They consisted of creating the metallic layer on the Ti3C2, by sputtering the titanium or molybdenum. To prepare the composites, powder metallurgy and spark plasma sintering (SPS) techniques were adopted. In order to evaluate the effectiveness of the applied modifications, the emphasis of the research was placed on microstructural analysis. In addition, the mechanical properties of the obtained sinters were examined. Observations revealed significant changes in the MXenes degradation process, from porous areas with TiC particles (for unmodified Ti3C2), to in situ creation of graphitic carbon (in the case of Ti3C2-Ti/Mo). Moreover, the fracture changed from purely intergranular to cracking with high participation of transgranular mode, analogously. In addition, the results obtained showed an improvement in the mechanical properties for composites with Ti/Mo modifications (an increase of 10% and 15% in hardness and fracture toughness respectively, for specimens with 0.5 wt.% Ti3C2-Mo). For unmodified Ti3C2, enormously cracked areas with spatters emerged during tests, making the measurements impossible to perform.

7.
Materials (Basel) ; 14(1)2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401690

RESUMO

Point-of-use (POU) water treatment systems and devices play an essential role in limited access to sanitary safe water resources. The filtering materials applied in POU systems must effectively eliminate contaminants, be readily produced and stable, and avoid secondary contamination of the treated water. We report an innovative, 2D Ti3C2/Al2O3/Ag/Cu nanocomposite-modified filtration material with the application potential for POU water treatment. The material is characterized by improved filtration velocity relative to an unmodified reference material, effective elimination of microorganisms, and self-disinfecting potential, which afforded the collection of 99.6% of bacteria in the filter. The effect was obtained with nanocomposite levels as low as 1%. Surface oxidation of the modified material increased its antimicrobial efficiency. No secondary release of the nanocomposites into the filtrate was observed and confirmed the stability of the material and its suitability for practical application in water treatment.

8.
Materials (Basel) ; 13(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33227963

RESUMO

This paper discusses the influence of Ti3C2 (MXene) addition on silicon nitride and its impact on the microstructure and mechanical properties of the latter. Composites were prepared through powder processing and sintered using the spark plasma sintering (SPS) technic. Relative density, hardness and fracture toughness, were analyzed. The highest fracture toughness at 5.3 MPa·m1/2 and the highest hardness at HV5 2217 were achieved for 0.7 and 2 wt.% Ti3C2, respectively. Moreover, the formation of the Si2N2O phase was observed as a result of both the MXene addition and the preservation of the α-Si3N4→ß-Si3N4 phase transformation during the sintering process.

9.
Materials (Basel) ; 13(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076362

RESUMO

A recent discovery of the unique biological properties of two-dimensional transition metal carbides (MXenes) resulted in intensive research on their application in various biotechnological areas, including polymeric nanocomposite systems. However, the true potential of MXene as an additive to bioactive natural porous composite structures has yet to be fully explored. Here, we report that the addition of 2D Ti3C2Tx MXene by reducing the porosity of the chitosan-hyaluronate matrix nanocomposite structures, stabilized by vitamin C, maintains their desired antibacterial properties. This was confirmed by micro computed tomography (micro-CT) visualization which enables insight into the porous structure of nanocomposites. It was also found that given large porosity of the nanocomposite a small amount of MXene (1-5 wt.%) was effective against gram-negative Escherichia coli, gram-positive Staphylococcus aureus, and Bacillus sp. bacteria in a hydrogel system. Such an approach unequivocally advances the future design approaches of modern wound healing dressing materials with the addition of MXenes.

10.
Materials (Basel) ; 13(10)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443733

RESUMO

Current trends in the field of MXenes emphasize the importance of controlling their surface features for successful application in biotechnological areas. The ability to stabilize the surface properties of MXenes has been demonstrated here through surface charge engineering. It was thus determined how changing the surface charges of two-dimensional (2D) Ti3C2 MXene phase flakes using cationic polymeric poly-L-lysine (PLL) molecules affects the colloidal and biological properties of the resulting hybrid 2D nanomaterial. Electrostatic adsorption of PLL on the surface of delaminated 2D Ti3C2 flakes occurs efficiently, leads to changing an MXene's negative surface charge toward a positive value, which can also be effectively managed through pH changes. Analysis of bioactive properties revealed additional antibacterial functionality of the developed 2D Ti3C2/PLL MXene flakes concerning Escherichia. coli Gram-negative bacteria cells. A reduction of two orders of magnitude of viable cells was achieved at a concentration of 200 mg L-1. The in vitro analysis also showed lowered toxicity in the concentration range up to 375 mg L-1. The presented study demonstrates a feasible approach to control surface properties of 2D Ti3C2 MXene flakes through surface charge engineering which was also verified in vitro for usage in biotechnology or nanomedicine applications.

11.
Materials (Basel) ; 11(6)2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895766

RESUMO

New methods for producing composite materials such as SPS (Spark Plasma Sintering) are becoming more and more popular due to the ease of implementation in industrial conditions and the versatility of the materials used for processing. In order to fully exploit the potential of this method, modifications were proposed which consisted in the deliberate induction of deformation during the sintering process. The influence of the manufacturing method on the microstructure of aluminum alloy matrix composites reinforced with layered crystals in the form of nanoflakes was investigated. Composites with the addition of 10 vol % of multilayer graphene and molybdenum disulfide were prepared and their density, hardness, and the influence of the deformation ratio on the changes occurring in the microstructure were examined. The potential of the method to shape the properties of the tested composites and the strong dependence of the obtained results on the morphology of the reinforcing phase was indicated. An interesting phenomenon observed for composites with the addition of MoS2 during the process was the reaction of the components leading to in situ formation of the Al12Mo intermetallic phase.

12.
Materials (Basel) ; 10(8)2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28796172

RESUMO

Self-lubricating composites are designed to obtain materials that reduce energy consumption, improve heat dissipation between moving bodies, and eliminate the need for external lubricants. The use of a solid lubricant in bulk composite material always involves a significant reduction in its mechanical properties, which is usually not an optimal solution. The growing interest in multilayer graphene (MLG), characterised by interesting properties as a component of composites, encouraged the authors to use it as an alternative solid lubricant in aluminium matrix composites instead of graphite. Aluminium alloy 6061 matrix composite reinforced with 2-15 vol % of MLG were synthesised by the spark plasma sintering process (SPS) and its modification, spark plasma texturing (SPT), involving deformation of the pre-sintered body in a larger diameter matrix. It was found that the application of the SPT method improves the density and hardness of the composites, resulting in improved tribological properties, particularly in the higher load regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA