Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 88(11): 1844-1856, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38105203

RESUMO

Nucleotide excision repair (NER) is responsible for removing a wide variety of bulky adducts from DNA, thus contributing to the maintenance of genome stability. The efficiency with which proteins of the NER system recognize and remove bulky adducts depends on many factors and is of great clinical and diagnostic significance. The review examines current concepts of the NER system molecular basis in eukaryotic cells and analyzes methods for the assessment of the NER-mediated DNA repair efficiency both in vitro and ex vivo.


Assuntos
Dano ao DNA , Reparo por Excisão , Reparo do DNA , DNA/metabolismo , Nucleotídeos
2.
Nucleic Acid Ther ; 29(5): 278-290, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31194620

RESUMO

Murine Krebs-2 tumor-initiating stem cells are known to natively internalize extracellular double-stranded DNA fragments. Being internalized, these fragments interfere in the repair of chemically induced interstrand cross-links. In the current investigation, 756 bp polymerase chain reaction (PCR) product containing bulky photoreactive dC adduct was used as extracellular DNA. This adduct was shown to inhibit the cellular system of nucleotide excision repair while being resistant to excision by this DNA repair system. The basic parameters for this DNA probe internalization by the murine Krebs-2 tumor cells were characterized. Being incubated under regular conditions (60 min, 24°C, 500 µL of the incubation medium, in the dark), 0.35% ± 0.18% of the Krebs-2 ascites cells were shown to natively internalize modified DNA. The saturating amount of the modified DNA was detected to be 0.37 µg per 106 cells. For the similar unmodified DNA fragments, this ratio is 0.73 µg per 106 cells. Krebs-2 tumor cells were shown to be saturated internalizing either (190 ± 40) × 103 molecules of modified DNA or (1,000 ± 100) × 103 molecules of native DNA. On internalization, the fragments of DNA undergo partial and nonuniform hydrolysis of 3' ends followed by circularization. The degree of hydrolysis, assessed by sequencing of several clones with the insertion of specific PCR product, was 30-60 nucleotides.


Assuntos
Carcinoma/genética , Adutos de DNA/genética , Fragmentação do DNA , DNA/genética , Animais , Carcinoma/patologia , Linhagem Celular Tumoral , DNA/farmacologia , Adutos de DNA/farmacologia , Reparo do DNA/efeitos dos fármacos , Humanos , Camundongos
3.
DNA Repair (Amst) ; 61: 86-98, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29103991

RESUMO

Mammalian nucleotide excision repair (NER) eliminates the broadest diversity of bulky lesions from DNA with wide specificity. However, the double incision efficiency for structurally different adducts can vary over several orders of magnitude. Therefore, great attention is drawn to the question of the relationship among structural properties of bulky DNA lesions and the rate of damage elimination. This paper studies the properties of several structurally diverse synthetic (model) DNAs containing bulky modifications. Model DNAs have been designed using modified nucleosides (exo-N-{2-N-[N-(4-azido-2,5-difluoro-3-chloropyridin-6-yl)-3-aminopropionyl]aminoethyl}-2'-deoxycytidine (Fap-dC) and 5-{1-[6-(5[6]-fluoresceinylcarbomoyl)hexanoyl]-3-aminoallyl}-2'-deoxyuridine (Flu-dU)) and the nonnucleosidic reagent N-[6-(9-antracenylcarbomoyl)hexanoyl]-3-amino-1,2-propandiol (nAnt). The impact of these lesions on spatial organization and stability of the model DNA was evaluated. Their affinity for the damage sensor XPC was also studied. It was expected, that the values of melting temperature decrease, bending angles and KD values clearly define the row of model DNA substrate properties such as Flu-dU-DNA>>nAnt≈Fap-dC-DNA. Unexpectedly the experimentally estimated levels of the substrate properties were actually in the row: nAnt-DNA>>Flu-dU-DNA>>Fap-dC-DNA. Molecular dynamics simulations have revealed structural and energetic bases for the discrepancies observed. DNA destabilization patterns plotted explain these results on a structural basis in terms of differences in dynamic perturbations of stacking interactions.


Assuntos
Reparo do DNA , DNA/química , DNA/genética , Mamíferos/genética , Conformação de Ácido Nucleico , Animais , Células CHO , Cricetulus , Dano ao DNA , Replicação do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Polarização de Fluorescência , Humanos , Simulação de Dinâmica Molecular , Desnaturação de Ácido Nucleico , Relação Estrutura-Atividade , Temperatura
4.
J Biol Chem ; 288(15): 10936-47, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23443653

RESUMO

The human XPC-RAD23B complex and its yeast ortholog, Rad4-Rad23, are the primary initiators of global genome nucleotide excision repair. The interaction of these proteins with damaged DNA was analyzed using model DNA duplexes containing a single fluorescein-substituted dUMP analog as a lesion. An electrophoretic mobility shift assay revealed similarity between human and yeast proteins in DNA binding. Quantitative analyses of XPC/Rad4 binding to the model DNA structures were performed by fluorescent depolarization measurements. XPC-RAD23B and Rad4-Rad23 proteins demonstrate approximately equal binding affinity to the damaged DNA duplex (K(D) ∼ (0.5 ± 0.1) and (0.6 ± 0.3) nM, respectively). Using photoreactive DNA containing 5-iodo-dUMP in defined positions, XPC/Rad4 location on damaged DNA was shown. Under conditions of equimolar binding to DNA both proteins exhibited the highest level of cross-links to 5I-dUMP located exactly opposite the damaged nucleotide. The positioning of the XPC and Rad4 proteins on damaged DNA by photocross-linking footprinting is consistent with x-ray analysis of the Rad4-DNA crystal complex. The identity of the XPC and Rad4 location illustrates the common principles of structure organization of DNA damage-scanning proteins from different Eukarya organisms.


Assuntos
Dano ao DNA/fisiologia , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
5.
J Mol Recognit ; 25(4): 224-33, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22434712

RESUMO

DNA glycosylases are key enzymes in the first step of base excision DNA repair, recognizing DNA damage and catalyzing the release of damaged nucleobases. Bifunctional DNA glycosylases also possess associated apurinic/apyrimidinic (AP) lyase activity that nick the damaged DNA strand at an abasic (or AP) site, formed either spontaneously or at the first step of repair. NEIL1 is a bifunctional DNA glycosylase capable of processing lesions, including AP sites, not only in double-stranded but also in single-stranded DNA. Here, we show that proteins participating in DNA damage response, YB-1 and RPA, affect AP site cleavage by NEIL1. Stimulation of the AP lyase activity of NEIL1 was observed when an AP site was located in a 60 nt-long double-stranded DNA. Both RPA and YB-1 inhibited AP site cleavage by NEIL1 when the AP site was located in single-stranded DNA. Taking into account a direct interaction of YB-1 with the AP site, located in single-stranded DNA, and the high affinity of both YB-1 and RPA for single-stranded DNA, this behavior is presumably a consequence of a competition with NEIL1 for the DNA substrate. Xeroderma pigmentosum complementation group C protein (XPC), a key protein of another DNA repair pathway, was shown to interact directly with AP sites but had no effect on AP site cleavage by NEIL1.


Assuntos
Clivagem do DNA , DNA Glicosilases/química , Proteínas de Ligação a DNA/química , Proteína de Replicação A/química , Fatores de Transcrição/química , Animais , Ácido Apurínico/química , Boroidretos/química , DNA de Cadeia Simples/química , Camundongos , Polinucleotídeos/química , Ligação Proteica , Coelhos , Bases de Schiff/química
6.
Nucleic Acids Res ; 38(22): 8083-94, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20693538

RESUMO

The interaction of xeroderma pigmentosum group A protein (XPA) and replication protein A (RPA) with damaged DNA in nucleotide excision repair (NER) was studied using model dsDNA and bubble-DNA structure with 5-{3-[6-(carboxyamido-fluoresceinyl)amidocapromoyl]allyl}-dUMP lesions in one strand and containing photoreactive 5-iodo-dUMP residues in defined positions. Interactions of XPA and RPA with damaged and undamaged DNA strands were investigated by DNA-protein photocrosslinking and gel shift analysis. XPA showed two maximums of crosslinking intensities located on the 5'-side from a lesion. RPA mainly localized on undamaged strand of damaged DNA duplex and damaged bubble-DNA structure. These results presented for the first time the direct evidence for the localization of XPA in the 5'-side of the lesion and suggested the key role of XPA orientation in conjunction with RPA binding to undamaged strand for the positioning of the NER preincision complex. The findings supported the mechanism of loading of the heterodimer consisting of excision repair cross-complementing group 1 and xeroderma pigmentosum group F proteins by XPA on the 5'-side from the lesion before damaged strand incision. Importantly, the proper orientation of XPA and RPA in the stage of preincision was achieved in the absence of TFIIH and XPG.


Assuntos
Dano ao DNA , Reparo do DNA , Proteína de Replicação A/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , DNA/química , DNA/metabolismo , Pegada de DNA , Desoxirribonucleases/metabolismo , Proteína de Replicação A/análise , Proteína de Xeroderma Pigmentoso Grupo A/análise
7.
J Mol Recognit ; 21(3): 154-62, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18438969

RESUMO

Recognition of new DNA nucleotide excision repair (NER) substrate analogs, 48-mer ddsDNA (damaged double-stranded DNA), by human replication protein A (hRPA) has been analyzed using fluorescence spectroscopy and photoaffinity modification. The aim of the present work was to find quantitative characteristics of RPA-ddsDNA interaction and RPA subunits role in this process. The designed DNA structures bear bulky substituted pyrimidine nitrogen bases at the inner positions of duplex forming DNA chains. The photoreactive 4-azido-2,5-difluoro-3- pyridin-6-yl (FAP) and fluorescent antracenyl, pyrenyl (Antr, Pyr) groups were introduced via different linker fragments into exo-4N of deoxycytidine or 5C of deoxyuridine. J-dU-containing DNA was used as a photoactive model of undamaged DNA strands. The reporter group was a fluorescein residue, introduced into the 5'-phosphate end of one duplex-forming DNA strand. RPA-dsDNA association constants and the molar RPA/dsDNA ratio have been calculated based on fluorescence anisotropy measurements under conditions of a 1:1 RPA/dsDNA molar ratio in complexes. The evident preference for RPA binding to ddsDNA over undamaged dsDNA distinctly depends on the adduct type and varies in the following way: undamaged dsDNA < Antr-dC-ddsDNA < mmdsDNA < FAPdU-, Pyr-dU-ddsDNA < FAP-dC-ddsDNA (K(D) = 68 +/- 1; 25 +/- 6; 13 +/- 1; 8 +/- 2, and 3.5 +/- 0.5 nM correspondingly) but weakly depends on the chain integrity. Interestingly the bulkier lesions not in all cases have a greater effect on RPA affinity to ddsDNA. The experiments on photoaffinity modification demonstrated only p70 of compactly arranged RPA directly interacting with dsDNA. The formation of RPA-ddsDNA covalent adducts was drastically reduced when both strands of DNA duplex contained virtually opposite located FAP-dC and Antr-dC. Thus RPA requires undamaged DNA strand presence for the effective interaction with dsDNA bearing bulky damages and demonstrates the early NER factors characteristic features underlying strand discrimination capacity and poor activity of the NER system toward double damaged DNA.


Assuntos
Adutos de DNA/química , Adutos de DNA/metabolismo , Reparo do DNA , Pirimidinas/química , Proteína de Replicação A/metabolismo , Sequência de Bases , Adutos de DNA/genética , Sondas de DNA/metabolismo , Polarização de Fluorescência , Humanos , Luz , Modelos Moleculares , Dados de Sequência Molecular , Nucleotídeos/química , Marcadores de Fotoafinidade
8.
Bioorg Chem ; 36(2): 77-84, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18191172

RESUMO

Photoreactive DNA duplexes mimicking substrates of nucleotide excision repair (NER) system were used to analyze the interaction of XPC-HR23B, RPA, and XPA with damaged DNA. Photoreactive groups in one strand of DNA duplex (arylazido-dCMP or 4-thio-dUMP) were combined with anthracenyl-dCMP residue at the opposite strand to analyze contacts of NER factors with damaged and undamaged strands. Crosslinking of XPC-HR23B complex with photoreactive 48-mers results in modification of XPC subunit. XPC-HR23B did not crosslink with DNA duplex bearing bulky residues in both strands while this modification does not prevent interaction of DNA with XPA. The data on crosslinking of XPA and RPA with photoreactive DNA duplexes containing bulky group in one of the strands are in favor of XPA preference to interact with the damaged strand and RPA preference for the undamaged strand. The results support the understanding and set the stage for dynamically oriented experiments of how the pre-incision complex is formed in the early stage of NER.


Assuntos
Reagentes de Ligações Cruzadas/química , Dano ao DNA , Reparo do DNA , DNA/química , Antracenos , Proteínas de Ligação a DNA , Fotoquímica
9.
Biochim Biophys Acta ; 1770(5): 781-9, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17320292

RESUMO

A new assay to probe the mechanism of mammalian nucleotide excision repair (NER) was developed. Photoreactive arylazido analogues of dNMP in DNA were shown to be substrates for the human NER system. Oligonucleotides carrying photoreactive "damages" were prepared using the multi-stage protocol including one-nucleotide gap filling by DNA polymerase beta using photoreactive dCTP or dUTP analogues followed by ligation of the resulting nick. Photoreactive 60-mers were annealed with single-stranded pBluescript II SK (+) and subsequently primer extension reactions were performed. Incubation of HeLa extracts with the plasmids containing photoreactive moieties resulted in an excision pattern typical of NER. DNA duplexes containing photoreactive analogues were used to analyze the interaction of XPC-HR23B, RPA, and XPA with damaged DNA using the photocrosslinking assay. Crosslinking of the XPC-HR23B complex with photoreactive 60-mers resulted in modification of its XPC subunit. RPA crosslinked to ssDNA or mismatched dsDNA more efficiently than to dsDNA, whereas XPA did not show a preference for any of the DNA species. XPC and XPA photocrosslinking to DNA decreased in the presence of Mg(2+) whereas RPA crosslinking to DNA was not sensitive to this cofactor. Our data establish a photocrosslinking assay for the investigation of the damage recognition step in human nucleotide excision repair.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Dano ao DNA , Sondas de DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína de Replicação A/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Animais , Bioensaio , Adutos de DNA/química , Sondas de DNA/efeitos da radiação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/isolamento & purificação , Escherichia coli/genética , Células HeLa , Histidina/química , Humanos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação A/isolamento & purificação , Spodoptera/citologia , Spodoptera/metabolismo , Raios Ultravioleta , Proteína de Xeroderma Pigmentoso Grupo A/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA