Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioinspir Biomim ; 12(6): 066008, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28726670

RESUMO

Voltage gating is essential to the computational ability of neurons. We show this effect can be mimicked in a solid-state nanopore by functionalizing the pore interior with a redox active molecule. We study the integration of an active biological molecule-a quinone-into a solid state nanopore, and its subsequent induced voltage gating. We show that the voltage gating effect mimics biological gating systems in its classic sigmoidal voltage response, unlike previous synthetic voltage gating systems. Initially, the quinone undergoes a reduction due to radicals in the bulk solution, and is converted to the hydroquinone state. Upon deprontonation the hydroquinone then acts as a charged nanomechanical arm, which opens the channel under the applied potential. We establish that the quinone gains a single net charge when the pH inside of the nanopore reaches its pKa value, and explore factors that influence the net pH in the middle of the pore. Using a combination of theory, experiment and simulation, we conclude that concentration polarization and a shift of the pH inside of the channel is the main cause of this gating effect.


Assuntos
Biomimética , Canais Iônicos/metabolismo , Nanoporos , Neurônios/metabolismo , Animais , Humanos , Concentração de Íons de Hidrogênio
2.
Anal Chem ; 86(20): 10445-53, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25245282

RESUMO

Pores with undulating opening diameters have emerged as an analytical tool enhancing the speed of resistive-pulse experiments, with a potential to simultaneously characterize size and mechanical properties of translocating objects. In this work, we present a detailed study of the characteristics of resistive-pulses of charged and uncharged polymer particles in pores with different aspect ratios and pore topography. Although no external pressure difference was applied, our experiments and modeling indicated the existence of local pressure drops, which modified axial and radial velocities of the solution. As a consequence of the complex velocity profiles, pores with undulating pore diameter and low-aspect ratio exhibited large dispersion of the translocation times. Distribution of the pulse amplitude, which is a measure of the object size, was not significantly affected by the pore topography. The importance of tuning pore geometry for the application in resistive-sensing and multipronged characterization of physical properties of translocating objects is discussed.


Assuntos
Modelos Teóricos , Nanoporos , Polímeros/química , Animais , Células Cultivadas , Eletroforese , Camundongos , Osmose , Tamanho da Partícula , Fenômenos Físicos , Poliestirenos/química , Porosidade
3.
J Phys Chem C Nanomater Interfaces ; 118(18): 9809-9819, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25678940

RESUMO

Rectifying nanopores feature ion currents that are higher for voltages of one polarity compared to the currents recorded for corresponding voltages of the opposite polarity. Rectification of nanopores has been found to depend on the pore opening diameter and distribution of surface charges on the pore walls as well as pore geometry. Very little is known, however, on the dependence of ionic rectification on the type of transported ions of the same charge. We performed experiments with single conically shaped nanopores in a polymer film and recorded current-voltage curves in three electrolytes: LiCl, NaCl, and KCl. Rectification degrees of the pores, quantified as the ratio of currents recorded for voltages of opposite polarities, were the highest for KCl and the lowest for LiCl. The experimental observations could not be explained by a continuum modeling based on the Poisson-Nernst-Planck equations. All-atom molecular dynamics simulations revealed differential binding between Li+, Na+, and K+ ions and carboxyl groups on the pore walls, resulting in changes to both the effective surface charge of the nanopore and cation mobility within the pore.

4.
ACS Nano ; 7(4): 3720-8, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23544709

RESUMO

In this article, we report detection of deformable, hydrogel particles by the resistive-pulse technique using single pores in a polymer film. The hydrogels pass through the pores by electroosmosis and cause formation of a characteristic shape of resistive pulses indicating the particles underwent dehydration and deformation. These effects were explained via a non-homogeneous pressure distribution along the pore axis modeled by the coupled Poisson-Nernst-Planck and Navier-Stokes equations. The local pressure drops are induced by the electroosmotic fluid flow. Our experiments also revealed the importance of concentration polarization in the detection of hydrogels. Due to the negative charges as well as branched, low-density structure of the hydrogel particles, the concentration of ions in the particles is significantly higher than in the bulk. As a result, when an electric field is applied across the membrane, a depletion zone can be created in the vicinity of the particle observed as a transient drop of the current. Our experiments using pores with openings between 200 and 1600 nm indicated the concentration polarization dominated the hydrogels' detection of pores wider than 450 nm. The results are of importance for all studies that involve transport of molecules, particles, and cells through pores with charged walls. The developed inhomogeneous pressure distribution can potentially influence the shape of the transported species. The concentration polarization changes the interpretation of the resistive pulses; the observed current change does not necessarily reflect only the particle size but also the size of the depletion zone that is formed in the particle vicinity.


Assuntos
Eletroporação/métodos , Hidrogéis/química , Microfluídica/métodos , Modelos Teóricos , Nanoporos/ultraestrutura , Simulação por Computador , Difusão , Campos Eletromagnéticos , Teste de Materiais , Tamanho da Partícula
5.
ACS Nano ; 6(9): 8366-80, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22913710

RESUMO

We observe single nanoparticle translocation events via resistive pulse sensing using silicon nitride pores described by a range of lengths and diameters. Pores are prepared by focused ion beam milling in 50 nm-, 100 nm-, and 500 nm-thick silicon nitride membranes with diameters fabricated to accommodate spherical silica nanoparticles with sizes chosen to mimic that of virus particles. In this manner, we are able to characterize the role of pore geometry in three key components of the detection scheme, namely, event magnitude, event duration, and event frequency. We find that the electric field created by the applied voltage and the pore's geometry is a critical factor. We develop approximations to describe this field, which are verified with computer simulations, and interactions between particles and this field. In so doing, we formulate what we believe to be the first approximation for the magnitude of ionic current blockage that explicitly addresses the invariance of access resistance of solid-state pores during particle translocation. These approximations also provide a suitable foundation for estimating the zeta potential of the particles and/or pore surface when studied in conjunction with event durations. We also verify that translocation achieved by electro-osmostic transport is an effective means of slowing translocation velocities of highly charged particles without compromising particle capture rate as compared to more traditional approaches based on electrophoretic transport.


Assuntos
Modelos Químicos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Simulação por Computador , Teste de Materiais , Tamanho da Partícula , Porosidade
6.
ACS Nano ; 6(8): 7295-302, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22793157

RESUMO

In this article, we report resistive-pulse sensing experiments with cylindrical track-etched PET pores, which reveal that the diameters of these pores fluctuate along their length. The resistive pulses generated by polymer spheres passing through these pores have a repeatable pattern of large variations corresponding to these diameter changes. We show that this pattern of variations enables the unambiguous resolution of multiple particles simultaneously in the pore, that it can detect transient sticking of particles within the pore, and that it can confirm whether any individual particle completely translocates the pore. We demonstrate that nonionic surfactant has a significant impact on particle velocity, with the velocity decreasing by an order of magnitude for a similar increase in surfactant concentration. We also show that these pores can differentiate by particle size and charge, and we explore the influence of electrophoresis, electroosmosis, and pore size on particle motion. These results have practical importance for increasing the speed of resistive-pulse sensing, optimizing the detection of specific analytes, and identifying particle shapes.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Poliestirenos/química , Tensoativos/química , Campos Eletromagnéticos , Teste de Materiais , Nanoestruturas/efeitos da radiação , Tamanho da Partícula , Poliestirenos/efeitos da radiação , Porosidade
7.
Analyst ; 137(13): 2944-50, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22396951

RESUMO

Hydrophobic interactions and local dewetting of hydrophobic cavities have been identified as a key mechanism for ionic gating in biological voltage-gated channels in a cell membrane. Hydrophobic interactions are responsible for rectification of the channels, i.e. the ability to transport ions more efficiently in one direction compared to the other. We designed single polymer nanopores with a hydrophobic gate on one side in the form of a single layer of C10 or C18 thiols. This nanoporous system behaves like an ionic diode whose direction of rectification is regulated by the pH of the electrolyte. In addition, reversible dewetting of the hydrophobic region of the pore was observed as voltage-dependent ion current fluctuations in time between conducting and non-conducting states. The observations are in accordance with earlier molecular dynamics simulations, which predicted the possibility of spontaneous and reversible dewetting of hydrophobic pores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA