Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 21(1): 345, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294034

RESUMO

BACKGROUND: Due to global warming, the search for new sources for heat tolerance and the identification of genes involved in this process has become an important challenge as of today. The main objective of the current research was to verify whether the heat tolerance determined in controlled greenhouse experiments could be a good predictor of the agronomic performance in field cultivation under climatic high temperature stress. RESULTS: Tomato accessions were grown in greenhouse under three temperature regimes: control (T1), moderate (T2) and extreme heat stress (T3). Reproductive traits (flower and fruit number and fruit set) were used to define heat tolerance. In a first screening, heat tolerance was evaluated in 219 tomato accessions. A total of 51 accessions were identified as being potentially heat tolerant. Among those, 28 accessions, together with 10 accessions from Italy (7) and Bulgaria (3), selected for their heat tolerance in the field in parallel experiments, were re-evaluated at three temperature treatments. Sixteen tomato accessions showed a significant heat tolerance at T3, including five wild species, two traditional cultivars and four commercial varieties, one accession from Bulgaria and four from Italy. The 15 most promising accessions for heat tolerance were assayed in field trials in Italy and Bulgaria, confirming the good performance of most of them at high temperatures. Finally, a differential gene expression analysis in pre-anthesis (ovary) and post-anthesis (developing fruit) under heat stress among pairs of contrasting genotypes (tolerant and sensitive from traditional and modern groups) showed that the major differential responses were produced in post-anthesis fruit. The response of the sensitive genotypes included the induction of HSP genes, whereas the tolerant genotype response included the induction of genes involved in the regulation of hormones or enzymes such as abscisic acid and transferases. CONCLUSIONS: The high temperature tolerance of fifteen tomato accessions observed in controlled greenhouse experiments were confirmed in agronomic field experiments providing new sources of heat tolerance that could be incorporated into breeding programs. A DEG analysis showed the complex response of tomato to heat and deciphered the different mechanisms activated in sensitive and tolerant tomato accessions under heat stress.


Assuntos
Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Temperatura Alta , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Termotolerância/genética , Bulgária , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Itália , Fenótipo , Melhoramento Vegetal , Espanha
2.
Biotechnol Biotechnol Equip ; 28(1): 68-76, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26019490

RESUMO

Genetic variability in modern crops is limited due to domestication and selection processes. Genetic variation in eight Bulgarian tomato varieties and breeding lines (variety Plovdivska karotina, variety IZK Alya, L21ß, L53ß, L1140, L1116, L975, L984) differing in their morphological and biochemical composition was assessed using a highly efficient and low-cost fluorescent simple sequence repeat (SSR) genotyping platform. Genotyping was conducted with 165 publicly available microsatellite markers developed from different research groups under a number of projects in tomato (SOL Genomics SSRs, Kazusa TGS and TES, SLM, TMS and LEMDDNa) among which only five (3.03%) failed to amplify the expected PCR fragments. Of the remaining markers, 81 (50.62%) were polymorphic in the whole collection of eight genotypes. Among the marker groups used, SLM markers were most polymorphic, followed by TMS and SOL Genomics SSR markers. The total number of amplified alleles was 299, with a mean of 1.869; and the average polymorphic information content (PIC) was 0.196. The genetic diversity within the collection was relatively low (0.2222). Nei's genetic distance varied from 0.0953 to 0.3992. Cluster analysis using the un-weighted pair group method with arithmetic mean (UPGMA) method indicated that the studied tomato genotypes are grouped in four main clusters, which is to some extent consistent with the morpho- and hemo-types of the studied tomatoes. Variety IZK Alya (cherry type) and two of the breeding lines (L1140, L1116) formed three separate and more distant clusters. The fourth cluster includes the other five genotypes. The observed grouping of these genotypes in two sub-clusters reflects their similar morphological and biochemical composition. The genetic distance information from this study might be useful for further implementation of breeding strategies and crosses among these inbred lines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA