Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Sustain Chem Eng ; 10(6): 2107-2124, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35186511

RESUMO

The main challenge of adsorption consists in the production of materials that can be used in real situations. This study comprehensively describes the CO2 and H2O adsorption behavior of honeycomb-shaped sorbents commonly used in rapid pressure swing adsorption cycles (RPSA). With this purpose, the kinetics and equilibrium of adsorption of CO2/H2O/N2 mixtures on three honeycomb carbon monoliths (793, 932, and AM03) were assessed in a thermogravimetric analyzer (TGA) under different postcombustion capture scenarios (temperature of 50 °C and several concentrations of CO2). The kinetics study exhibited that the single adsorption of CO2 and H2O can be adequately described by the Avrami and exponential decay-2 models, respectively. As expected, the three carbon monoliths presented fast adsorption of CO2 from a CO2/H2O mixture. Furthermore, when humid flue gas was considered, overall adsorption kinetics were governed by CO2. Besides, the experimental data fitting to the intraparticle diffusion model showed that gradual CO2 and H2O diffusion toward the micropores was the rate-limiting stage. The obtained results give a better insight into the selective adsorption of CO2 and the potential of honeycomb carbon monoliths to separate CO2 from humid flue gas in the context of the cement industry. Carbon monolith 793 is the best carbon monolith candidate to capture CO2 under the evaluated conditions: a capacity of adsorption of 1 mmol of CO2 g-1 and favorable kinetics in 32 vol % CO2 and 4 vol % H2O(v), at 50 °C and 101.3 kPa.

2.
Materials (Basel) ; 9(5)2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28773488

RESUMO

The effect of post-treatment upon the H2O adsorption performance of biomass-based carbons was studied under post-combustion CO2 capture conditions. Oxygen surface functionalities were partially replaced through heat treatment, acid washing, and wet impregnation with amines. The surface chemistry of the final carbon is strongly affected by the type of post-treatment: acid treatment introduces a greater amount of oxygen whereas it is substantially reduced after thermal treatment. The porous texture of the carbons is also influenced by post-treatment: the wider pore volume is somewhat reduced, while narrow microporosity remains unaltered only after acid treatment. Despite heat treatment leading to a reduction in the number of oxygen surface groups, water vapor adsorption was enhanced in the higher pressure range. On the other hand acid treatment and wet impregnation with amines reduce the total water vapor uptake thus being more suitable for post-combustion CO2 capture applications.

3.
Chemosphere ; 93(9): 2148-58, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24035693

RESUMO

In this work, a statistical experimental design is performed in order to prepare CaCO3 materials for use as CaO-based CO2 sorbent precursors. The influence of different operational parameters such as synthesis temperature (ST), stirring rate (SR) and surfactant percent (SP) on CO2 capture is studied by applying Response Surface Methodology (RSM). The samples were characterized using different analytical techniques including X-ray diffraction, N2 adsorption isotherm analysis and Scanning Electron Microscopy-X-ray Energy Dispersive Spectroscopy (SEM-EDX). CO2 capture capacity was determined by means of a thermogravimetric analyzer which recorded the mass uptake of the samples when these were exposed to a gas stream containing diluted (15%) CO2. The statistical approach used in this work provides a rapid way of predicting and optimizing the main preparation variables of CaO-derived sorbents for CO2 sorption. The results obtained clearly indicate that four parameters statistically influence CO2 uptake: SR, the square of SR, its interaction with SP and the square of SP.


Assuntos
Poluentes Atmosféricos/química , Carbonato de Cálcio/química , Dióxido de Carbono/química , Sequestro de Carbono , Modelos Químicos , Adsorção , Microscopia Eletrônica de Varredura , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA